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-n AUTHOR'S NOTE

#o

CHAPTER I1I, "Testing of Hypotheses,” is part of the material
being prepered in conmection with a contemplated handbook or monograph
on Statistical Techniques in Life Testinz. I is in the nature of n

prelininary report on one aspect of the overwall undertaking:

Eerlier reports were:

Technical Renort No., 1. "Statistical Daovelopments in Life
Testing." Jume 1, 1957.

Teehnical Report No. 2, "Tho Exponential Distribution and Ite
Role ir lLife Testirg." May 1, 1958.

"An Ouiiine ol Three Chaplers of a Handboox on Statistical
Methods in Life Testing," June 5, 1938.

Further uaterlel dealing with othey ampects of life testing
is in preparation.

Comments and sugpgestions are invited.

Benjamin Epstein

",ufhﬁ
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Chapter II

Testing of Hypotheses

Introductory remarks: 1In the following we shall asswne that the under-

lying pe.d.f, of the lifo-time X is described by

(1) I(z;O):%e'x/o,x>0,0>0c

Our objeét ia to test various hypotheses regarding the mean life
© on the basis of censored, truncated, or sequontial precedurss. Various
tables and graphs are given and in ths appendix, aprropriate raferencgp

and proofs appear.
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Segtion 1
Problem: Give a censored life test procedure which will have the property

that the probability of rejecting a lot with mean life O = °o is equal
to < . Furthermore give the operating characteristic (0.C.) curve for
this procedure; i.e., plot L (@), the probability of accepting a lot
having mean life ©, against O, ~

Solution: A censored life test involves terminating the test after a
preassigned number, r, of failures occur. More precisely, n items
are drawn at random from a distribution whose p.d.f. is given by (1) and

placed on life test. Observations become availsble in order; i1.e.,

‘l,n < xz'n € o0 £ xr,,n £ oo £ ‘n,n , whare by xi' is meant the time

n
when the i'th failure occurs. Experimentation is terminated as soon as
the r'ta failure occurs.

In the non-replacement case (where failed items are not replaced), it
can be shown that an estimate of € which is "best" in the sense that it

is maximum likelihord, unbiaied; mninimum variance, efficient and sufficient

is given by

(2) 8o = |F Tt D) xm]/ .

In the replacement case (where one immediately replaces a failed item

by a new one) the approrriate "best" estimate is given by

(3) 6 = nxr

r.n

/r.

o2
where by xr.n is meant the total time (mcasured from the beginning of the
life test) to observe the r'th failure and where the sample size n is
maintained throughout the life test.

The folioving results are very useful:

(1) The p.d.f. of 6r.n in either the replacement or non-replacement

case is given by
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) t.(y) = iy /'y 0, 30

= O, elsewhere

and further the random variable W = err l‘/0 is distributed as chi-square
]
with 2r dogrees of freedom (Xz(Zr)).
(11) The expected waiting time for the r'th failure is given by

al O ZE: 1/ (n-3+1)

(5) E(X
) 3 381

in the nor-replacement case and by

(6) E(lxr n) = rd/n

3

in the replacement case.

From (4) we can now write down a test procedure having the required
property that the probability of rejecting a lot with mean life € = 90
is equal to X (such a procadure can also be said to have size, type I

error, or producer's risk X ). The region of acceptance is given by

A 2
(7) 8, p > C =0, Ao (&0)/2r,

where we define the constant X: (2k) by the eguation
@) pr (X220 >3 @0 = .

The O.C. curve assoclated with this procedure is gf:von by
(9) 1(0) = Prob(8, . > 0 %% _ (2r)/erld)

0
2 2
= Prob( X“(2r) > -6-9' Xl ‘(21')‘)0

It is convenient to choose units in such a way that boz 1. If

this is done, (7) and (9) become,respectively,



ARt ¥ 0

b
5
%
3

o T

) o~

2.h

L, )
(;d) 61“ > X e (2r)/2r
(9" L(o) = pr (X B2 5L 2 _ (2r)/0).

In Table 1 we dam give the values of XiJ{(Zr)/zr for r = 1(1)10(5)
30(10)50(25)100 for < = .01, .05, .10, .25, and .50, The untabulated values
corrceponding to r < 100 can be found from tables of chi-square, For
valuea of r > 100, the normal approximation to chi-square, or the more
refined approximations due to Fisher or to Wilson and Hilferty can be used.

In Tables 2 (a&),(b),(c),(d),(e) we give the valuce of © which are
accepted with probability p = .99, <95, .90, .75, .50, .25, .10, .05, ;na
o0l 4f a lot with 0 = )L iz accepted with probebility ?99. 095, 90, o75 ana.
.50, respectively. O, C. curves based on Tebles 2 (a), (b}, (¢), (d), and
(e) are given for the r values noted above in Figures 1 (a) through 1 (e).

Al) of the test procedures given by (7) have the property that
L(Oo) = l-e( independently of n. Changes in n affect E(xr,n)' the
expected weiting time to obaerve'the r'th value in a sample of esize n.
Tne appropriate choice of n for a given 1 and hence fixed type I error,
o< , depends on economic considerations and involves balancing the cost
of increasing n, with the gains due to decreasing the expected waiting
time of the experiment. To facilitate the making of such judgments we
give values of E(xr,n) for r = 1(1)n and n = 1(1)20(5)30(10)100 in
Table 3 (a) and for r = 1(1)10(5)30(10)50(25)100 and n = kr, with
k = 1(1)10(10)20 in Table 3 (b).

It is particularly interesting to compare tbe following two procedures:
(1) a test based on Sr.r where r items are rlaced on test and where
one waits for all r items to fail and (2) a test based on °r,n where

n items are piaced ou toéf and where one waits only for the first r
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failures to occur. From (5) the expected waiting times in the non-replace-

ment case are given by

b % r
A e —teres ‘
E(Xr’r) =0 §=1 1/j and B(X rwn) ) ﬁ':i 1/n-j+1 , rospectively.

Thus the ratio o
r.n

saving in time dve to uaing the second procedure rather than the first

£ ; .
(xrgn)/g(xr,r) i3 a measure of the expected

procedure. Valucs of can be computed readily from Tables 3 {a)

ﬁ:r,n
aud 3 (b). 4 urief table ie givon ir Table 3 (¢). It follows from (6)
that the expected maiting times in the replacement case are givea by

E(Xr ) = 0 and ®(X n) = r%n. In this case the xatio . o 15 slmply
% ]

ur by >
Fs ¢ ( ] ..s.-.. 3
< ron E(xngn)/E(xr,r) N

Numerical Example: Let us compare ths aversge lengtir of time needed to
obssrve (&) the failure of the firast 2 out of 4 items under tost with
the average length of time required to observe, (b) the failure of 2 out

of 2 items. The snewer is o<, . = E(X, )/B(X, )) = L / 2= 1/18 = 23889 .
. Ly 4 ~

Hence it will take on the average only 7/18 as long to obaserve the first

2 out of 4 items as 2 out of 2, If life is exponential we know that tests
baced on either (a) or (b) have the wame 0. C. curves; however, the time
reguired for (a) is on the avorage substantially shorter tham for (v)
Taverage tims for (&) is about 40 of the aversge time required for (b)l.
Remark:nuIt was noted above that for given type I error {or producer's
risk)e: and egtopping number r, all test procedures (7) have the same

0., C. curve independent of n. ‘o wish to give a method for choosing

a best procedure from this class of procedures. It is clear that for
fized ¢. and », increasing u will on the ona band cut the expected
valting time, but will, on the other hand, increase the cost due to placing

of
aocre items on test. More precigely, if 2% is the costAwaiting per hour
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and ¢, 1is the cost of placing an item on test, then the total expected

2
cost associated with a plan based on (7) , assuming that the mean life is

; 1 1 1
close to eo ) 18 given by ¢, 60(E oo teeet m) + con in the
non-replacement case and c, eo ,:_;, + con in the replacement case. It
is clear that there exists an n which makes this quantity a minimum and
that this minimum depends only on the ratio °2/°1' Table 3 (a) is useful

in reaching a conclusion as to the best n.

To illustrate the point in the non-replacement situation consider a
case vhere r = 10, (<] o " 1000 brs, c, = $1 per hour, c, = $100 per item
tested. Then we have the following table:

Cost, of igems .

n Expected cost due to waiting teste Total cost
10 2029 1000 %929
11 2020 1100 3120
12 1603 1200 2803%
13 1346 1300 2646
14 1168 1400 2568
15 1035 1500 2535
16 931 1600 2531
17 847 1700 2547

Tae minimum is attained for n = 16,

It is easily verified that for the given values of r, 60, c;» and
c o? the optimum n 1is 10 in the replacement case.

We have Just given & numerical example. It is of interest to give a

general method for finding the optimum n. In the replacement case the

optimun n 1s the integer nearest to \J ©1 eg r +i; ( or either
c
2

m or m+11if fl_?_o_f+1 = 2m+l for some integer m ).
¢, 5 "z
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}i In the non-replacement case, we choose the smallest n , such that
E(Xp o) - B(Xp ny) < "2 . In the above numerical example, cpfe; 04 = .1

[+
‘and E(xlo,_q) "Eﬂ(_xvl‘?_mfl) -_>._:-1~for n =10, 11, 12, 13, 14, 15, and

- E . : 16. Therefore, the appropriate n = 16.
E(Xyg,n) = E(Xyp ny) <e1 for n2l )

The procedures described by (7) depend on knowing the first r values

X, < X . Tt is interesting that if the underlying distribution

is exponential, then one can find a truncated procedure having almost pre-
cisely the same 0.C. curve as the ér,n procedure. The only requirement
that this be so is that n be moderately larger than r. The advantage
of such procedures is that they depend only on an extremely simple observa-
tion, the time of failure of the r'th item. Procedures of the form,
accept if xr’n >T aﬁd reject othervise, are very simple to interpret.

In words, the rule of action is to stop experimentation at min- [xr n;![‘]

’

vith acceptance of the hypothesis if min [xr rl;T] s T (since in that

case the r'th failure occurs after time T) ;nd with rejection of the
hypothesis if min(xr,n;'r) . xr’n (since in that case the r'th failure
occurs prior to time T). Experimentation is actually truncated at T
and at Xpon o respectively, in the two situatioms.

To derive the truncated procedures one proceeds as follows:

In the replacement case (7) becomes

(20) *r,n >9°7 | xf—q (2r)/en
and (7') becomes (when Oo is normalized as 1) ,
(101) x 2> X 54 (20)/2.

fn the non-replacement case, the exact procedure is obtained by first

s ‘i’il“ﬁ
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In the nonereplacement cace, we choose tho amallest =n , such that

€2

F(xr.n) - E(xr.n+l) < ;;—3: . In the above numerical exanple, cZ/cloo =z ol
and E(xlo,n) - E(xlo,n+l) > .1 for n = 10, 11, 12, 13, 14, 15.,and

B(X,, .) - B(X ) <.l for n > 16 . Therefore, the appropriats n « 16 .

10,n 10,n+].
The procedurcs described by (7) deyend on knowing the first o values

xn S% 8 vee S X, o It is interesting that if the underlying distribution

{8 exponential, then one can find a truncated procedure having almost pre-

A
cisely tune sare 0.C. curve as the °r n procedure. The only requireuent
?

that this be so is that n be moderately larger than r . The advantage
of such procedurec is that they depend only on an extremely simple observa-
tion,; the time of failuro of the r'th itenm. Procedures of the form,

accept 17 - > T eand reject otherwise, are very simple to interpret.
1] -

In words, the rulc of action is to stop experimentation at ain Lxr n;T]
]

with acceptance of the hypothesis if min er n;T] = T (since in that

|
case the r'th failure occurs after time T) and with rejection of the

hypothesis if nin(xr n;T) =X.n (since in that case the zr'th fallure
L}

occurs prior to time 7). Experimentation is actually truncated at T

Ten
To derive the truacated procedures one proceeds as follows:

and at X -, respectively, in ths two situations.
]

In the replacement case (7) becomes

. 2
{10) ’r,n > e, 7(1_9‘(2r)/2n

and (71) beccues (when O  is normalized as 1) ,

(20) z, o > K5, (20)/2n .

In the pon-replacement case, the exact procedure is obtained by first

. oy o - T T AT T I G W7 e b oDl e
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writing down the distribution of the r'th smallest value in a sample of

size n. In the case where O =1, the p.d.f. of x, ~ 1is given by
i L]
§ (11} g, (x) = al [1".“er—1 o-la=rHl)X o 5 o
% ryn (r-1)t{n=-r)1 ' S

Therefore, Pr(xr n> T) bhecomes
o

o ~ @
(12) 1>x-(xrvn > ?{., JQ grgn(x)dx
. @ nl wX
= _4 ED T (a7 (Lo )

Letting u = i-e >, #e get

r-l
0«(n-r+1)x dx

1
(13) Pr(xr n ™ = n(?Z%) j' ur""(l«u)m'r du
' (1-e~T) |
If we wont to solve for T in the equation Pr(xr g T) = JaoX ¢
]
we can do this readily freca tablaes of the iucomplete Betu distribution.
.. An alternative procedure is to use tables of the cumulative binomial

distribution. Iif ono definos B(k;n,p) as

ok
(14) B(ksu,p) = 2 b(V;n,p), vhers
=0
n Y n~V )
b(Vin,p) = (y) P (lfp) s then one cen show that (13) becomes
2. (P re - |
(15) 1-8(r-l3n,p) = n(:bi) j‘ ut 1(1uu)n Fau,
o
where p = 1~0'T. Te solve the p.ublem at hand, the procedure iec to compute
p 80 that
2w ny ok n-k
(16) 1-B(r-1;n,p) = 2__ (k)P (1-p) =oC

=y

and then set T = log(i%;)o

An alternative approximate procedure in the non-replacement case
i‘ which has been chown to be extremely close to the exact procedure is

obtained as follows:

’
ﬂg”‘xﬂ‘?’ﬂ‘f | B T ST RGBS, TR S e s
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In (7) or (7.) replace the unbiased estimator ér’n by ﬁr.n X n

E“ ( where B = 1/B(X_ ). It has been obaserved that if n is sufficiently
t . Toh % |
} larger than r, then the 0.C. curve resulting from using the acceptance

region /5 r‘ & *r.n > C wvirtually coincides with the 0,C. curve associated
? ]
with ar a > C. Corsequently a test procedure having virtually the same
v

0,C. curve as (7) or (7') is given by

2 2 '
(17) 2 a2 T 20 Y @Verf =6 XTI o (0B )/
or
' 2 2
(7" D VY. S Xla(?.r)z(xrﬂn)/zr

in tho normalized case 00 =1,

In Table 4 we give values of Xi,((ar)E(Xr n)/.":r for the values
v

of r and o« covered in Tablo 1 and for various values of n. If

,m—y

and n are sufficiently large, then —)—g;—fulog( n:r )o This approxi=-
mation is useful for computing some values of T when r and n 1lie
outside Table 4.

n
Remark: An approximate formula for p, satisfying E (:)p ” l‘(1--1» “)n-—k. ol
ker

is found by solving for p“ in the equation:

—tae 2 .
1°3(1-p.‘) = XI_K(Zr)E(Xr’n)/Zr. Solving for P, oOne gets:

2
- X3 (erIEx, /e

p“ = l-¢ °

Example: r = 10, n = 20. Find p such that & (Zo)p k(l-p )ZOak.“
' L% k=10 & o o

for o« = ,01, .05, .10, .25, .50. In colummn 2 we give the approximate
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value of P 188 obtained by the formula, snd in column 3 wo give the
value of P computed by interpolation from fheHhrvard tables of the

Cumulative Binomial Distribution.

ol P, (approximate) P, (exact)
.01 241 0239
L4 05 . 305 o }OZ
.10 - 340 +338
25 N T - 4#02
14 50 © “?6 - [ ‘}75

Numerical Examples:

1. Find a censored life test which will accept a lot having a mean life
of 1000 hours with pfobability .90, The experiment is to be stopped
after one has observed the first 5 failures. .

Solution: In iermes of the notation that we have used Go = 1000, = .10,
and r = 5. 1In the non-replacement case ¥ o Exl+x2+x}+z,++(n-’+)x5]/5°

and in the replacement case 65 = nxs/So The region of accaptance ia
t

1

2 2
given by O . > 9. Y7 o (2r)/2r = (1000) X 25 20310

= ’*86-50
In words, place n items on test. Wait until the first 5 failures occur.
Compute ‘65g o+ Accept the hyjothesis that O = 1000 if 35"“ > 486,5,

reject otherwise.

2, If the above procedure is used, find the probability of accepting a
lot having mean life 9 = 500 ; @ = 250.

Solution: The result can be obtained readily from the 0,C. curve in

Figure 1. Analytically we use formula (9). From this we get
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. \
L(%00) a Pr{X"'uo) > zng (10)} - Pr(lz(m) > 9.730}

kg 047

L(250) = P:{'quo) > #’nguo)} s pr{X"’uo) > 19.,1»6}

2 037
3, If the above procedure is used, for what value of @ 1is L(Q), the
probability of acceptance = .50? = .107 =.005? |
Seolution: Using table 2 (¢), L(Q) = .50, for © = 521; L(@) = .10, for
@ = 304; and L(Q) = ,05, for © = 266,
4., Find the expected waiting time in the nonvrepiacoment case for the
following choices of n: 5, 10, 20, assuming @ = 0° = 1000;

Solution: From formula 5 or more easily from Table 3 (a) or 3 (b) we get
E(x5.5) = 2283, E(XB,IO) = 645.6, and E(XB.ZO) = 279.5.

5, Same as 4 in the replacement case.

Solution: E(xr n) = rOo/n
and E(x5.‘5) e 1000, E(X .10) s 500 and E“sgao) = 250,

6. Find a truncated procedure based on 15 10 in the non-replacement
L]
case, with Type I error X=x .10 .

Exact solution: Compute p so that
o -
& a0,
k=5

Using binomial tables we find p = .267. Thus

T = log —1-.}_';- = log —7’%3- - «3106.

Thus the test procedure is: Accept if 25;10 > 311 and reject otherwise.
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According to (17) an excellent approximation is given by letting

T = 0 YT s (20)E(X, )/2r = (486.5) (.6456) = 314 .

See also table 4 {c) with » = 5 and n = 2r = 10,

The two values: 311 (exact) and 314 (approximate) are vory close.:

7. Find a truncated procedure based on x5 10 in the replacement case.
75, .
Solution: According to (10) the appropriate truncation procedure is to

accept if

X5 10 > (1000)(4.865)/20 = 243.2

and reject otherwisa.
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Scetion 2

3

A cersored test having the property that its 0.C. curve is such that

L(e) =1~ and L(e,) < B .

O T ey e s g o

One frequently wishes to design a life test which requires that the

0.C. curve meet the following prescribed conditions:
(L) 1t © =9, then L(Oo) =1 o
(14) 1t ©=6,, then L(¢,) <A

whers Oo > Gl .
Put into words we have a situation where lotz having mean life
@2 Oo are considered desirablej lqta having mean 1ife @ < 01 ara
considered undesirahle, The interval (01. Oo) ic essentially a zoce
{ of indifference., 'the o and B can be thought of as producer's and
consumer's risks or as errors of the first and second kind, raspectiyelyo
The problem amounts to chooming r 4in (7) in such a way that not
only is L(Go) =1~ d, but alsc that L(Gl) & B - From (7) and (9)

it is clear that these two conditions are met if r 4is such that

8 2 %2 () 2 (2r) 2o %2 (ary X2 (o)
(18) 5 Xy o r) 2 g (2r) or OO-XJ.-cr r)/ Kg -

‘ More precisely we want the smallest = meeting this condition;

i,8.,, we want that integer r which is such that the associated 0.C. curve

[

passes most nearly through the points L[ 6  , L(Oo) «l-&K] and
L e L(Ol) =A47] ., It is readily verified that as r goes throuzh the

values 1, 2, 3, ... the ratio Xf _t(Zr)/ X; (2r) increases monotonically

to unity. Consequently we can always find an integer r such that

(19) X‘? (2;-)/X2 (2r) > -O-A'- > xz (2r-2)/ Xz (2r-2)
1l ~o¢ . 8 - °O l-x - ﬂ er-2 i

AP A BRI O YRS s 7 o
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This is the value of r which we want to usoe., Ueing this value of

r, the rezion cf acceptance

\ “ 2
(20) rn > 9 Xju(r)/er

is guch that its aesociated 0.C. curve has L(Q ) = lwsc wnd L(6)) < 8 .
V.
In Table 5 we give the appropriate values of r and of /Yz_og(ar)/Zr
for the 16 number pairs (q(,/B) which can be made with the numbers (.01,

Q

+05, .10, .25) and the values k = —o~ = —g-‘, 2, 3, 5, ard 10,
1

Remark: !t will be noted that the values of r required for k = ~%~
are @uite large. It is our feeling that,generally speaking, it is rare
that ore would want to work with values of k < ~§~, In case this is eo,
kowever, we should like to indicate how we would fird the required r
and iuo&(ar)/arﬂ

Since r must be large we use the approximation that ){Q(Zr) is
aistributed approximately normally witb mean 2r and standard deviatiom
2V"F". Thus te require that the 0.C. curve be such that

o
L(0)) = l-ec and L(6;) & B with == =k < 2=

%
01 -]

we choose the smallest integer r auch that

K‘é(?r) )
2 £ 5= =k
X3 (2r) 1

approximation, finding r seuch that
2r + 268 VT Ca +k cu.\a
0 =k or r= - ol // .
2r + 20 V'r

C, or Gs = 2,326, 1.645, 1,282, .674 for o« or B = ,01, .05,

This meaas, using the ndfmal

.10, .25,respectively.
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Oace we have found r, then )(§u°<(2r)/2r is given by

2r « 26 VT C e
2r Y

Numerical Examples
l. Design u coracied life test which will nmeet the following conditiones:

When 9 = 1500, L(Go) = <95 and when @, = 500, L(Gl) < .05.

[ #2]

olution: iIn the problem k = 00/9l = 3, ol = .05, aud &= .05

ov—n

Using Table 5, we see that r = )0 ard the region of acceptance is given
by

oy S @ = 2 2 .

%1007 C = % X,,gs (20)/20 = 815.
For this procedure L(Qo) = .95 exanctly and L(Gl) = ,033 .

2, FTind the appropriate r for the came where k = 00/0l = 1.1 and

o< = B= .05

Solution: Usaing the remark, we know that

2
. _(;.;6t+§ + 31,‘12(1:‘6l&§2>
= .1

H

[21)(2.645)]
(34.55)% = 1194,

4

Fruncuted lifs teats having the proporty that the associated

0.C. curve is such that L(Oo) 21-w< and L(Q)) B

In tho previous section we considered censored life tests, i.e.,
teats in which life testing stops after a preacribed number of failures,
r, have occured. i/hile such tests do in general have the desirable

effoct of shortening experiment time, there i= nevortheless the ever



NN

2,16

pPresent feature that one does not know precisely when the experiment
will end, since this depends on the random time xr,n' As a matter
of fact, it is frequently necessary because of practical considerations
to terminate a life test by a preassigned time '1'0 » & requirement
which censored tests do not meet.

It we wish to truncate en experiment by a preassigned time '1‘°
ve are led to truncated life tests in “which it is decided in advance

that the 1life test will be terminated at min(xro,n; 'l'o) where xro’n

is the time when the ro'th failure occurs and To is the truncation
time beyond which the life test will not be allowqd to run. (Both T,

and To are preassigned.) If the life test is terminated at Kr n
(e 24

(i.e., r, failures occur before time T,), then the action taken will
be to reject. If the experiment is terminated at time T, (1.e. » the
ro'th failure occurs after To)’ then the action in terms of hypothesis
tesﬂng is a.ccepta.nce._ It can be shown that three functions characterize
the test procedures in either the replacement or non-replacement case.
These are:
(1) Eg(r), the expected number of items failing before reaching
& decision,
(11) Ee(T), the expected waiting time to reach a decision, and
(111) L(@) , the probability of accepting, if the true value of the
mean life is © .
In the non-replacement case
(21) Ee (r) = npel!(ro -2;n-1, pe) +rgll - B(ro- 1; B,Dg )]

vhere pg =1 -e 'To/e.
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The probability dtstvidution of r 4is glven by

(22) Priz-k|0) = b(k;n,pe), X = 0,1,2,.:-,F =1
and '
(22°) Br(rer |0) = 1 - B(r_-1;n,p,) -
Further, cne hay T,
(23) Eg(T) = > Prr=k|0) £, (X, ),
X=1
vhere Eeixk’n) can te found from {5), and
£ 1
(2b) 1{e) = Z: Pr(r<k|0) = B(r -1;n,p,; -
720

In the replacemen’ case the probability distridbution of r is glven by

{25) Prirak|e) = PIEAG), E m 0,1,2,..0,7 1
r -l
f25°) rirar10) = 1« 3 plgrg) = 1 - alr -ling)
"k \
In {25) and {25'), g uTQ/O , p(k;ho) e xe/kz
end r
ﬂ(r;).o) . Z p(k;he) .

k=0
Further, one has
{26) Eef\r) - ).9’1{1~°~2,' Ae) + rofl-«x(ro-l;).g)]
(27) Eg(2) = eE (r)/n
and
{28) L(0) » s:\ro-l;xe) .
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Ve have just given formulae for the .C. curve, the expected waiting
time, and axpected number of items failed in the course of reaching a
decision for any preassigned nu, To' Py The problem is to find the
appropriate truacated test (i.s., to find r, and n) when the trun-
cation time To is preassipgned and the 0,C. curve is required (for
preassigned type I error o« and type II error Aﬁ) t> be such that
L(0,) 2 1-=< and L(9,) < B . It can bo shown that for both the
replacement and nol-ieplacement cases the appropriate Y, is precisely
the one used in the censored test (20) and tabulated in Table 5. 1In

the replacement case; the appropriate value of n one should choose

is given by

(29) n e [QOXi_ *(Zro)IZTo]

where [x] meanz the greatest integer < x.

In the non-replacement situation a geod approximate value of =n,
in case 00/‘1‘° is substantially more than one (say 2> 3), 1im given
by

-To/C
(30) n = ro/(l-c )

e 2 " .
whezre C = oo)(l»ck(a*o)/aro and where r, is the ssme as in the

replacement casc.

In Table 6 (7) we give the appropriate values of n to use in
.the replacement (hon-replacement) case when o = .01, .05, .10, .25;
B = .01, (05, .10, .25; © /0, = ~%~, 2, 3, 5, 10; and
Go/!o = 3, 5, 10, 20. The values of n have becn thecked by computing
L(Oo) and L(Ol); the 0.C, curve of the truncated test does come very

closs to meeting the requirements L(9 ) 2 l-et and L(9,) /5 o



[P S -

IR g Y N IR X Sy o
st

2,19

y T

Several remarks appear %o

t at this point and should be mad«s

Remark .]_.8 In the replacement case the 0.C. cur.e the test sasad on

; n ic
ro,n

given by (29), is such that L(G,) 21~ , but in some cases {i usy happen

'l'o) s where the values of r, are given in Table 5 andg w2

that 1’.(91) may be slightly > 8 . This can be avoided in sither of two ways.
One way is to give the experimenter the freedom to use, instzud of “he t:uncation
time T, , the slightly larger trancation time T = 0 X2 (2r)/im . The test

based on ms.n(xr ;'r;) will have L(oo) = leol and L(e]) < /4 - The other.
o,n ’

way is to use (n+l) items throughout the test and 1o ase, instead of 'l‘o » the

slightly smaller truncation time T8 = ooii. o« (2rg)/2(ne1} . Tha vest based on

min(xr 3'1';) will have L(Oo) = JeX and L(Ol) S B - In most cases it

oyn+l

will be a matter of indifference which procedure onc adopts.

1
Remark 2: A good approximate solution for finding a truncated non-replacement
test procedure was given by (30). An alternative, mcre direct (and also more
lengthy) procedure for finding a truncated non-replacement test meeting the

.conditions prescribed is to note that such a test is equivalent to a binomial

-T /0 -T /0@
situation in which we test Py = 1-o ° against Py = 1l-e 1 e want

the 0.C. curve to be such that L(po) >l and L(pi) < 3+ Stated in the
language of sampling inspection, we are seeking a sarple sizre n and 2 rejection
number r = such that the resulting 0.C. curve has the property that L p) >l
for lots with P<p, and L(p) < for lots with P2 P « The detailed
calculations necessary to detemine n and r

°
situation by using the Binomial Tables or Tsbles of the Incomplete Beta Funct.ion.

can be carried out in any give:

Romark 3: It is appropriate to mention that truncated test procedures of tha
kind corsidered in this section are good rules of action in cases where tho
underlying life distribution is not necessarily exponential. More rrecitely,

we mean the following: Suppoas that an acceptable ot of clectron tubes
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i cme tm which the probadility of failing befort sue- L
thot @@ mvccptublo lot is one for vhich the probsbility of funuro before
soks tine T, is > pl(’l > po) and suppose we want to 0.C. curve to be s .u
tst L{p ) > 1-G and L(p,) <6 . It is clear that the comments made in
remark 2 are relevant here and thst the test procedure involves finding a
sample sfzec o ‘and rejection number r, such that we will accept the hypc nesis
that p ~ p_ if the number of defectives (failures before T 0) in the sam-le
< (ro - 1) and reject the hypothesis that p p; (accept p = pl) if the
number of defactives in the sample > r, - This test procédm clearly is
truncated and Las Zue puooperty that I.(p ) > 1-¢ for any distribution F (x
vhich is such that S °ar (x) <p, and L(pl) < B for eay distribution F, x)

-x/9

which i such that Jo «xrl(x) >2p - If, in particular, Fo(x) = l-e °o ,

. . - A -X/e : 1
& 1 - Y -
with 9 = T‘ /log ey and Pl(x) - l-e 1 , with ' 61 T /log I

the tzet procedure just ciescribed has the property that L(eo) > 1l-a and
L(elﬁ < 8 . Recalling that the rule of action can be written as agccﬁ if

nin( ron"ro) « T and reject if mn(xr 0T )= ro -

the truncated pirrocedure which one gets 1n the exponentia.l case vhen testing

» We have precisely

o, against 6, with I(6,) > 1@ and L(el) < B . But from the preceding
argument the test procecdure is distribution free in the sense that it is the
appropriate one to use vhen ve wish to distinguish between two distridutions

Po(x) and Fl“‘} with
o -TO/QO To -'1'0/‘1
aF (x) < p_ = 1-e and drl(x) >p, = 1l-e .
o o —°° o -

for all cuii cases i(F ) > 1-G and L(F,) <P . In this connection it
13 useful to point out how Table 8 can be used to design single sample plans

+hich are such that vhen p = P, » the probability of acceptance equals 1-&
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and vhen p = p, , the probability of rejection is greater than or equal to
1-8. Itis assumed that 0 < Po<P < - 10 end that the producers' risk

G and consumers’ risk P are allowved to assume the three values .01, .05, .10,
thus giving rise to nine possidle pairs (@ , ) . In entering the table, the
ratio p,/p, should be identified with 6 /o, . When this is doneathe
rejection number ia given by T and the sample size is given by [xl-a(ar")/ep;l
where [x] means the greatest integer < x . In this table, ro is the upper
number and xi_aiaro)/E 1s the lower number.

The Justification for the procedure stems from the fact that the probability
of draving a defective item from & lot having fraction defective p 1is, for
small p , essentially the same as the probability that a failure occurs when ’
one observes a Poisson procese having failure rate p (per unit time) or mean
1ife 1/p , for a uanit of observatioﬁ time. Thus, drawing a sample of size N
from a lot having fraction defective p can be thought of as drawing one item
at random from a lot whose items follow a life distribution which is exponential °
with mean life 5 « l/p ; placing this item under test; replacing it, when it
fails, by & nev item drawn form the lot, and terminating experimentation either
as soon as ro failures c"ccur or when 'ro = N units of time have elapsed,
whichever comes first. This means placing n = 1, 0, ™~ l/po in formula (29)

and getting the sample size N = 'l'o " [le _a(?-!'o)/ 2P° J .

[N



e LT BT T IEA e R TLAT I S,

R

PN

2.22

Kumerical les

‘1. Find a truncated replacement plan for which To = 500 hours, which will
accept a lot with mean life = 10,000 hours at least 95 pexr cent of the time
and reject a lot with mean life = 2000 hours at lemst 95 per cent of tie time.
Compute L(o),zo(r) ; and !O(r) at © = 10,000 snd © = 2000, respectively.
Solution: In this case 6, = 10,000, 8, = 2,000, & = (5 = .05,

Since oo/elaﬁ, it follows from Tedle 5 that r = 5 . From Table 6,
ve find that corresponding to ©./0, = 5, 9 /T, = 20, &= p .05, n w 39.
Thus the following truncated replacement plan meets the requirements: Start
the life test with n = 39 items. As coon as one item fails, replace it by
e nevw item. Acnept the lot if mtn(x5,39;500) m 500 sand reject the lot if
m(x5,39;5oo) @ x5, 39° If the lot is rejected, experimentation is stopped at
X5,39 s the time of occurrence of the fifth fallure.

For 6 = 10,000, AN nTO/O a (39)(500)/10,000 = 1.95. Using Molina's

_Tables, one finds from (28) that L(Q) = .952. Substituting ia {26) and {27),

respectively, gives Be(r) = 1.93 end Be(’l‘) w 495, For © » 2,000,
Mo ® nwoje = (39)(500}/2,000 » 9.75. TFor this value of O , L{0) » .03k,
Ee(r) « 4.95, and Eo('r) w 254,

2. Sane as 1 excert that we want & non-replaceszent procedure.,

Solution: r, =5 . According to M:T7,°m saxple size 18 n = 42, Por
© = 10,000, Tc/e ~ .05, snd p_ = 1l-e = .049. Using the Binomial Tables
cne finds from (z4) that L(O) = .9k6. Snb-utu.uhg in (21) and (23) gives
By(r) = 2.02 and Bg(T) = 494 . For © = 2,000, T /@ = .25. For this

value of © , L(®) = .033, ‘o(r) o %.91 , and lo(‘l‘) - 248.

3. Consider the truncated replacenent plan meeting the conditions of Problem 1.’
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For vhat values of 9 1s L(9) » .57 What are Ee(r) and Ee(‘t) for this

valus of 0 ?

Solution: To find the # such that L(0) = .5 wmesas fisding 7\9 such that
mb;%) « .5 . Using the Nolina tables,ve see that this meens Ae = 1.67 .
8ince Aen‘nra/e »With n w39, T =500, one finds 0 = 4180 . Prom (26)
and (27) we find se(r) = 3.97 snd RO(T) - 424 .

4. Consider the truncated non-replacemsnt plan meeting the conditions of
Problem 2 . For vhat values of 0 is L(0) « .5 1

Solution: This means finding p, euch that a(u;ha;pe) : /g . Using the
Bincmial tables this means p, = .1104 . Since 1-e” © , the appropriate
8 « 427h . In this problem Ee(r) and ze('r) vill be approximately the same
as in the replacemsnt case. The exact calculations csn be msde from (21) , (22),

and (23) and are left to the reader.

5. Pind a life test having the following properties: It will accept at
least 955 of the lots for which the probability of failing before some time
T, 18 < .01 and will reject at least 90} of the lots for which the proba-
bility of failing before 'ro is > .05 .

Solution: In line vith vhat vas said in Remsrk 3 this means finding the
sppropriate sampling plan for the special case vhere P, = 01, P 05,
Gw 05 ,Pw .10. Inthis case pllpo- 5:T, = 4, and from Table 8, the
sample size N ~ (1.37)/.01 = 137. _Thus the life test is as follows: Place
137 items on test. If &4 or more failures occur before time 'ro s Teject. If
3 or fewer failures occur before time l'o » Sccept. It should be noted that we
are not nﬁu any assumption sbout the underlying distridution of lifc.
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Section &4

Sequential Life Tests

It cen ¢ shown that sequential life tests are supericr to cither‘ccnsoied
or truncated life testa. It is shown in & paper by Epstein end Sobel that the
sequential probability ratio test of A.Wald can be applied to life testing.

The interesting point now is that decisions cean be made ccntiunously‘in time.

At each moment ¢t , one can decide either to accept, to reject, or to continue
the life test. If we are, as before, testing no:e - eo against Hl t 0w
-6, (9° > ol) with Type I error « 0 and Type II error = £ , then the decision

as time unfolds depends on

) .
\ - 3 1
(31)‘ B <(—6§) exp [-(6-; - a-; ) V(t)J <A,

vhere A ard B cen for all practical purposes be taken as
(32) . A« (1-)/a and B e B/{1-a) .

In {(31) r is the number of railures observed by time t and V{t} ir
a statistic which equels the total number of hours lived by all items, railed

and unfailed, up to tize t . In the replacement cas>
{337 vit) » ot .

vhile in the nc¢n-replacement case

(343 v(t) - 1{‘,1 (n-141) (x; - x, ;) ¢ (8-7) (t=r )

- Ef: x; ¢ (n-r)t

iwl

Ie (343 x, denotes the time of the i'th failure.
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Remark: The decision to continue experimentation is made as long as the inequality
(31) nolds. As soon as (31) is violated, one accepts H,(i.e;0 =0,) 1if the

function of t in (31) 14s<B , and one rejects E, (accepts H;) if the
function of t 1in (31) 1s >A.

Remark: It should be noted that in the non-replacement case a special problem
arises if all n d1tems fail without reaching a decision. This' eventuality can
be taken care of in various ways and will be discussed in the Appendix.

If we wish to graph the life test data continuously in time, it is convenient
to write (31) as

(35) -by + rs <V(t) <h  + rs

where h, , hl ; and s are positive constants given by

o
o
- log B log A log\ o7
(36) ho=]T1—-,h1=-1—-I,a.nds! 1 1 .
8," 6 6,°6, 6 6

A good way to describe h, , hl , and 8 , is as'follovs:
ho is the intercept on the total life axis of the accept line; 'hl is the
intercept on the total life axis of the reject line; and s 1is the common slope
of the two straight lines.

The 0.C. curve, i.e., the probability of accepting H‘> vhen © 1is the

true parameter value, is given approximately by the parametric equations

0, h '
Ah -l 61) -1
(37) L(O) = sy O = ” ’
A~ -B 1 _ 1
RN Ty

by letting the parameter h run through all real values. The values of L(O)
at the five points ¢ = 0, 07,8, e_o,ao enables one to sketch the entire

curve. These values are,respectively, O , 8 , log A/(log A - log B) , 1 -a ,
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and 1. HNote that in viev of (36), L(s) = log A/(log A - log B) = hll(ho +h) . an
approximete formula for lo(r) » the expected aumber of items to reach a decision,

when 6 1is the mean life is given by

L(6) log B + -.1-9 ‘1 A _w,g,‘.
log(o_/6,) - 9(31 -5/

o

(38) By (r) ~

=logAlogs _ "o P
[logeo/el] aé

If ve let k w 90/91 , the approximate values of Ee(r) become particularly
simple vhen ¢ -91 s 8, oreo .

They are

Eel(r) w[B log B + (l—i) log A] /[log k-(k-l)/kJ

(39) E,(r)~ - log A log B/(log k)°

E, (r) ~ [(l-a) log B + @ log A] /[log k-(k-i)]
o

It can further be shown that Ee(v(t)) the expected amount of total life

observed in reaching a decision is connected with Be(r) by the identity.

(40) | E,(V(t)) = 6E,(r)

-

in either the replacemsat or non-replacement case. Since, in the replacement
case V(t) = nt , it follovs that Be(t) » the expected waiting time to reach
a decision, is related to lo(r) by the formulae

(%2) E,(+) = 6K (r)/n
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In the non-replacement case,

(42) Ea(t) - é Pr(rsk | 9)ze(xk’n)

vhere Eg(xk n)’ is given by (5) . A good epproximation for Ea(t) is given by
’

(43) Eo(t)ﬁ‘a loa(atig-r;y) .

Practical Applications

It will be convenient to normalize the preceding situation in such & way

that 90 » L . If this is done it is convenient to calculate snce and for all
2 1 1

1 '3' ’ '2‘ > 3 »

for d = 0L, .05 and 8 « .0L, .05. In Table 9 , we give the values of

the values of ho y h and 8 for the casas where el - and
ho s hl », and s for each of these casges.

In the event thet ao is not equal to one and that Kk « 90791 - % » 2, 3
orne can readily find the appropriate eguation for V(t) by multiplying by, h
and 8 by 8, + 1In Table 10, ve give approximate values of Ee(r) for the

valuegs of @ , B, and k = 90/91 given abave,

Numerical Examples

1. ©Find a sequential replacement procedure which will accept a lct with mean
life §_ = 1500 hours, 95§ of the time and will reject a lot with mean life
8, » 500 hours, 5% of the time. The constent nusber of items under test

is nw 20 . In this cese, 90-1500,91-;500,(1-6-.05.

Solution: Substituting in formula (31) ve get

Ilg < 33' e-t/37'5 P 19

H

1 ?
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In this case (35) becomes
- 110 + blr < ¢t €110 ¢ 41Ir ,

vhere t represents the length of time that the life test has been in progress
and r denotes the number of failures obtained up to time t . The experiment
is continued as long as the inequality holds and is atoppéd eg soor as the in-
equality does not hold. If, at the time of stopping, 1t is less than the left-
hand member of the inequality, we reject @8 o™ 1500 (accept 9l = 500) ; if, at

the time of stopping, t 1is greater than the right-hand member of the irnequality,

we accept eo = 1500.

2. Compute Ee(r) and Ea(t) for 6 = 0, 91(- 500) , s(= 823) , Go(is 1500) ,

and o .

Solution: From Table 10 we get E (r) = 3, Eal(r} = 6.14 , B (r)« 7.18, '

Eeo(r) « 2.9% , and Ew(r) w0 .

In the replacement case Ee(t) 1s found most easily for all values of 6(f o)
by using (41) , Be(t) - eEe(r}/n . This gives Eo(t) -0, B (t} » 155,

: 1
Es(t) - 295, and E (t) =220 . For 6 = @ , the expected waiting time is

)
giver by t_ , vhere Q-t/37.52%§ .

This gives t = Emr(t) »« 110 .

Remark: More generally, in terms of B, n, 90 , aad k we find

t, = =0, 0g n/n(k~_1) .

This meeans that if no items fail by ¢ o ? we stop experimentation at ¢ 00 with

acceptance of Ho .

3. Assume that we are testing the nypothesis in problem 1. A sample of sise

s vl
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20 is placed on test. Items which fail are replaced at cace by new items drawn

from the same lot. The experiment is storted at time t « 0 and the first five

{0 failures occur at Xy - 20.1 hours, X, - 100,5 ACUTS x3 = 121.7 boure,

xh » 167.4 hours, and x5 « 179.2 hours, all times reing measured from t « O .
{a) Verify that no decision bas been reached by time x. -
{b)  Vorify thet 1f the sixth failure has not yet occurred at 315 hours,

measured from t . O , we can stop experimentation at that time with acceptance

of H‘:> , namely that ﬂo = 1500 .

Solution: We remarked in the polution to {1) that (33) becomes
- 110 &+ Blr <t < 110 + H#ilr .

This reglon is dravu in Figure (2). Tue life test deta sre plotted py moving
vertically suv long as we are waitisg for the next fa8ilure to occur, asnd moving
horizcntelly by one wult (in r) at each failure zime. In Flgure {2) the
path crosses into the region of acceptazice vhen r -~ 3 , at time ¢ = 110

+ {419 {5) « 335 . Since the sixth failure has not yet occurred we can stop

life testing ¢ - 315 hcurs, with acceptance of ) -

Remark: As 2 matter of fact,we happen to know in this example that the aixth
failura occurs at x. = 346.7 bours. Thus, es indiceted in Figure {2) , we
saved 346.7 - 315 » 31.7 hours by virtue of the Jact that life test data

were becoming available cortinuously in time.

4. The tirst.six feilure times in & sample of 20 (with replacement) are

xl - 19-3 » xa - ‘:‘548 » x3 L] “909 » xh ” %-7 ? X_m 11502 ) x6 - 127-7 .

5
Verify that if the hypothcses being testzd ere those in Problem 1, then ﬁo

i8 rejected at time x6 = 127.7 hours.

Solution: X, » X5 » x3 ' X, , and xg all fall within the region bounded by



- wmzmm

2,30

the two straight lines. However,when r = 6 , - 110 + blr =» 136. Since
Xg = 127.7 < 136 , Ho 18 rejected at iime xg = 127.7 hours. A graphical

solution is given in Figure {3) .

Remark: While the acceptance of B, (] 0™ 1500) in Problem 3 is made between
failure times :t:5 and Xg s rejection of H 5 in Probiem 4 1is made at the

failure time x6 y with an excess over the boundary. ‘This illustrates the point
that acceptance of Bo is alvays made between failure times, whereas rejection

of H o is always mede at a failure time.

5. Find & truncated {nonsequential} replacement procedure for testing the

hypothesis in Froblem 1, using a cuistant semple gize n « 20.

Solution: From cur earlier results dealing with truncated replacement procedures
it can readily be verified that the truncated replacempnt procedure meeting the
requirements is

(1) 1t min | Xy0 ¢ ho7.5j ~ 407.5 , truncate the experiment st 407.5
wvith acceptance of Ho o

(11) If min E"],o . h07.5} - X0 ° truncate the experiment at X0 with
acceptance of !!:ﬁ
The 0.C. curves of this test procedure sznd of the one in Problem 1 are

essentiaily the same.

6. Compute Ee(r) end Ee(t) for the plea in Problem 5 for 9 « 0,91,1,00,0.

Solution: Using the formulae given in the section on truncated replacement
procedures and recalling j.bgg.____ne,(t) - aze(r)/n » One gets Ee(r) =10, 9.93,
8.5, 5.39, 0 and

E,(t) = 0 , 248 , 360 , 4Ob.5 , 4OT.5 for

8«0, 91(500) , s{83) , 90(1500) , and &, rnpectivgly.,
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7. Compare Be(r) and Ee(t) for the test procedures obtained as solutions

to Problens t and 5 .

Using the solutions to Problems 2 and & , one has the following

Solution:

Solution:
comparisons:
By (r)
Truncated with replacement rule [9 » 0 |0 w 500.] 0 « 823 | 6 = 1500 | 0 » @
10 9.93 8.75 5.39 o
‘Sequential rule 3 6.1% 7.18 2.9% 0
E (¢)
“Truncated with replscement vule | 6 » O } 0 « 500] 5 » 823 | 6 = 1500 | 9 = ®
) 28 360 hok.5 407.5
Sequentiai rule o 155 295 220 110

Theez tables give o fairly good idea of the savinge associated with adopting a
continuous sequential vather than & truncated plan and are typical of what may be
expected to happen. 4 graphical comparison of the two procedures is given in

Pigure 4 .

8. Find too in Froblem 1 if O .« B = .01 .

Solution: ty v~ 9, log B/n(k-1) = 230 . This lis about twice the value of
tm mn a - .B . 105 .

9. Pind L(s) for zll nine combiztfiions of Q= 0L , .05, .10 and B w .01, .05 ,

.10 .

Since L(e) = hl/(nO + hl), it follows from Table 9 that L{s) 1is

given by the values in the following Tsble.
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L(B)
o0 |.es | a0

0L | 500 | .60k | .662

‘05 '396 -500 *562

A0 ] 0338 | 38 | L5006

Repary: Sirce L{0Y . 2, L(ec} = l-Q , LiGlD w P, anai L{cr) « L we cep
readily drivs $he C.0, curves for all of the cases treaced.

10 Fir3 a saguential test for the case when @ « .05 | B o« 5 0, ~ 300 ,

e 0,
and Ul ne

‘ : 3
Solution: Fromw 'fabvie §, one finds that bc = hx-“ L.n722 isimee 9, = ? ifr
A ———— o S—— ’ - Y

Sc {s pormniized as 1) . Therefore the region {35) i: given hw

00(-L.k722 + 5ho3r) < V{t) < 300{1.4722 .» .5493r}

L3

After nimpiifyiuz this becozee

-~ W2 4 365r < V{t) < W2 v 165r .

The life teat ig corcinved 50 loog as V(t: sarinfies noth inequeiities.
he gocn as the inegraliiicr are vinluied, ome accepts BQ {i.e-, 90 = 300) 1if
vit) o Lh2 o x65r end rejectie B, {accrpts H, {1.e., 9, = 00)) 1f v{t) <
8- Lk2 . 165r.
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Appendix 2 A

Most of the results in sections 1 and 2 of Chapter II are proved
in the following reference:

B, Epstein and M. Sobel, "Life Tusting”, Journal of the American Statisti-
cal Association 48, 486-502, 1953.

In Appendix 1 of that paper it is shown that 6r'n as given by (2)
is a "beat! estinmate of © in the non-replacement case zad the p.d.f,
(4) is derived. The uxpected waiting time formula (5) for E(xr,n) is
derived in Appendix 2 of the reference. Tho "beast" test based on the
first r out of n failures having the prescribed properties that its
0.C. curve is such that L(0 ) = 1< and L(ei) 5)8 is obtained
directly from the Neynan~Pesarson lemma in Appendix 3 of the reference-

There is little point in writing down detailed prcofs when they are
readily availablerto the interested reader in the reference just cited.
There is, however, good reason io give some supplementary material which
is very helpful in understanding the various results. This we shall do
in what follows.

In life tontihg prodblems wihere one makes the assumption that the
underlying distributicn is expoaential, the following results play a
fundamental role:

(1) Given a Poisson process for which the rate at which events
occur per unit time in A . Let the random fumction X(t) ( X(0) is
assunmed equal to zero, be the number of evente occuring in (0,t) .

Then
(1) - rr(x(t) = k) = Q-M(?\t)k/k!g k= 0,1,25000 o

More generally, 1if tz > t,, then

1l
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-t -ty ) k. -
(11) Pr(x(ta)ex(tl) =k) = o [h(tawtl)l /k!.
k = 051;2,.0“

(111) Let the random variable T be the waiting time until the

first count, or,more generally, the waiting time betweon successive countsy

then the p.d.f. £(t) of T din given by

£(t) = o~

s £20
= 0, elsewhere
and the ¢.d.f. F(t) is given by
' F(t) = 0,6 < 0O

At’ £ >0,

= dea
In Feller's hook on Probability Theory the fundamental postulates
for the Poisson process are given as follows: whatever the number of
[ changes during (0,t) the (conditional) prebability that during (t,t+h)
a change occura.is Ah+o(h), ard the prchability that more than one
change occurs is of snaller magritude thar h,
Proof: (i) and (ii) are direct consequences of the definitions of &
Poioson process. To prova (1ii) let 7T bhe the random variable repre~
sonting the waiting tize until the first couni occurs (measuring time
from the origin c¢Z tim: % = 0) or the waiting time between two succes-

sive counts (whero zme ‘7ould now measure time from the moment when the

last count was recorded and would wait for the next count), then

(2A.1) Pr(T > t) = Pr (0 counts occur in an interval of length ¢t)
= Prob (X(t) = 0) = e~*t,
Therefore,,
C (24.2) F(t) = PriT < &) = 1-Pr(T > ¢) = 1ee™*, t-> 0

& 0, slsewhere
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and
(24,3) £(t) = Fi(t) = ae” ™, t >0
= O, elsewhere.
(2) A Poisson procesc has the following interesting feature by definition,

Ifr 0 t S.tz L oo £ t, £ cvo, then the random variables
{:X(tl)o X(tz) - x(tl)gcoag X(tk) - X(tknl)} are mutually independent.

(3) Consider the random variable T distributed with padef,

£(t) = )e"Atg t > 0. Then Pr(T > t+tlT > t) = equ « Put into words:
If one observes o Pciscon process for a lengih of time t and no events
occur, then the probability of no eveiris occuming in an additional amount
of time 7T 4is given Ly e“A%: This iz a apecial case of (2) where one
considers only the two intervals (0,¢) =ead (t, t+ 7).

(4) Putting (3) into life testing langisge we haver given that an item
kas lived for a leagt: of time t, tuen the conditional probability of
surviving aa additionid 7T time uniis is givern by e-kT’ﬂ But this is,
of course, thoe probability 6f en iter surviving T units ab initio, Thus
if the underlying dicst»ibution is exponential, items that have survived

up to any given time arn "as gcod 23 new" and "have not aged", The proof

is very casy:

{2A.4%) Pr(T > ©¢T|T > %) = Pr(T > ¢+ T)/Pr(T > t).
- .->\(§t+'l')A-?‘t - 0" AT

This was the result that we wanted to prove,

(5) If n itens each uaving tha ped.f. of life f(t) = Aa“aw are
Placed on test simultancously »" scme time t = 0, thaen the first failure
to occur, tl, is exponentialiy distributed with rate ad . Two short

proofs follow,

N
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Proof 1: Recalling the connection between Poisson processes and the
exponential p.d.f., ve can imagine that we superimpose n Poisson
processes each having failure rate A . The result is a Poisson process
with failure rate n ). Hence from (1)(111) the p.d.f. of the waiting
time for the first failure s given by f,(t) = nAe™A% ¢ >0 and the
c.d.f. 18 F (t) = 122t >0,
Proof 2: An alternative proof is to recall that the first fw.ure is
the smallest in a sample of size n drawn from an exponential p.d.f.
The c.d.f. of the smallest value is given by
Fy(t) = 1-(1-F())" = 1-e™A%, £ > 0. Tnis 1s the result cbtained before.

We now use these results to obtain formulae (2) through (6) in
Section 1. First we note that given a Poisson process with rate A, _
then the associated waiting time random variable T has expectation |
(2A.5) E(T) =f° rte” Map =3,

In the life testing context, where T 1is thought of as life, E(T) ®
mean life = O = % . Thus items exponentially distributed with mean life
0 can be thought of as walting times between successive occurrences of
a Poisson process with rate Az é .

We now obtain formula (2) (non-replacement case) using the ideas of
Poisson processes. Placing n items on test at time t = 0, with each
item having an exponential p.d.f. with mean life @, 1is equivalent to
considering the superposition of n Poisson processes, each having
rate A = 61 . The process obtained by superposition is still Poisson
vith parameter A, = é . The first failure observed at time X .n
1s expomentially distributed with mean 1ifé o and so me) o s

exponentially distributed with mean 1life © . Consider now what happens
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after time X a0 At time X, , one has (n-l) items left each with
®

]
mean life @ (this is a consequence of 3 and 4). Thus one is now deal-

ing with a superposition of (n-l) Poisson procasses each having rate

i

o and hence the suporposition is a Poisson process with rate (Egl) o

. 1th mdo. L

Therefore, xa,n'xl,n ie exponentially distributed with mean life oy

and (nol)(xa n“Xy ) 18 exponentially distributed with mean life @,
] ¢

Also, xl,n and (323n°x1bn) " are mutﬁally independent. Continauning in

the same way {;1en; KZ,nMXIQn HESH xi'nwxi_l'n;...ﬁ xr,n'xrwl.n}
are nutually independent and drawn from exponentisl distributions haviag
mean lives - e . S respectively. More
' n=l’ ***lpai?® 0¥ popal ’ -
ginply tha r random variables {yi = ta~i+l)(xiwxi“1), i= 1ﬁ2,0.¢ﬂ%

where x, = 1 are mutaxlly independent with vommon p.d.f. %e"y/gd y > 0.

Thercfore,
P oL
(2A.6) %= 3 v /T = (n~i+1)(xi~xiul)/b
i=l - i=1 -
r /
=17 = + (ner)x / r
é;f i.n ““r.n -

is unbiasod. The other properties (such as moximum likohood, unbiasedness,
minimum variance, effi:iency, and sufficiency) are provsd in the refereace
cited above. The pod.f. (I}) of Q follous directly from the fact that

the sun of independent random variables euch of which is exponential
follcwa a Type 11X dieuribution. More precisely consider the random

r

variable U =) ¥y This can be considered as the waiting tize for
i=1 ’
th . )\ 1 1 |
the r event in a Poisson procees with paraceter = ., Tho pid.f.

=3 .
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G of U is found by uasing the fundamontal postulates for a Poisson proccas.
Thus '
(2A.?7) Pr(t < U < t+t) = Pr(r-l evonts occur in (O,t) and }
event occurs in t t+uot)
= Pr(r<l1 events occur in (0,t)]. Prll event occurs in (t,t+ut)]

rel o 'g-

= (%) e

(r-l)! '%l °

Therefore,the p.d.f. cf U is given by

Tl
% (-g-) et ¢ 5o,

L}

; (24.8) () = =37y

But.'@r n = U/r and uvsing simple transformations the p.d.f. of 3}

» ,

becomes (4), To prove (5), we note that

(o (24.9) xr.,n ® x).,n * (xz,,n‘xlﬁn) MIRAL A (Lrgn“‘ral,n)
; b4 ¥ Y
y - —2 S
' "% Taal e taTea ¢
; But the !:I. ere each distributed with the p.d.f. % e"x/e.; Thereicre,

r
(24.10) E(X, ) =@ R ya 9%_:_'1: 1/ned+d

ner+l

and thus (5) holds.

Incidentally, since Y,'s are also mutually independent it follows

3
" that
2 & 2
(24.11) var(x_ ) = 053 3/(n-3+1)° ;
ron PE——
=1
also )

(24.12) cov(X_ i X, ) =ver X, = o2 ; 1/(n-3+1)%, it a2 r

2 2
= var th =9 i; 1/(n-j+1)°, it r 2 8.

- R - o a e T e s, Ty Aokt
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For example, suppose s > r. Then

(2A.13) xs'n = xr'n + (X‘.n - Ir'n)o
Hence
(2A.14) cov (xr.n; x.on) = cov (xr’n; xr,n + (x‘.n - xr'n))

= cov (X ;X

r,0 rbn) + cov (xr, 3 X - xrvn)°

th

Noting that X, , (the waiting time for the r failure) and
]

th

X =~-X (the waiting time betwsen the r = and 6 B failure) are

8.0 r.n
independent, we get that
cov (xr,n‘ xs“n) = Var (xr‘n) it s2>» &
Similarly

cov (X, Ia,n) = Var (X ) if r 28

H
o )

Thus (2A.12) i3 proved.

Up to this point we have dealt exclusively with the non-replacement
case. If items are replaced as they fail,then it is clear that placing
n items on test and replacing failed items at once by new items is
equivalent to observirg a Poiason process with rate As /. If
%.n £ X0 L. £ X0 37 the first r failure times (time being
measured from the beginning of the expsriment), then
‘{31 p¥%2 =% greccoXe poXnL ;} are mutually independent and iden-

] L} ] ] bt X }
cally distributed with common p.d.f. %.-nx/on The random variables
('i =1 (:1"!1-1)’ i= 1.2....,:) + where x =0, are mutually
independent with common p.d.f. %0“’/9. z > 0. Therefore,
(2A.15) ’e-i: z,/r = nx_ _/r
w1 vy
is unbiamsed. Other optimum properties are easy to ashow and as before

the p.d.f. of € is given by (4).
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To prove (6) note that

(24.16) La"%nt “a.n - xl.n) + eos + (xren - xr-l,ﬂ’
o
= lge By -
B 01  §
But the Z,'s are each distributed with p.d.f. % 0'3/00
\
Therefore,
| £ o]
(2‘.17) : E(Xr'n) = n B(Z) = B o
From the mutual indepencdence of the Zi'a it also follows that
8 | C
(24.18) Var X . = F?
and
2
. oL
(2A.19) cov (xr.n. X.qn) =z var x::',n = nz s, 12 82 r
2
80
= var xa,n=:§-° it r2 s



£
'

—,
\

2.1
Appendix 2B

e bave seen that in life tests where items that fail are not
replaced,then the statistic 61- n? where
L]

X, _+X. _tooe?X + (n-r+l)x
(2B.1) 0 =m-kad 2.0 =)0 r

r.n : b 4

2B

]

is a "best" estimate. It can further be shown that the "best" test for
0 x Oo against alternatives ¢ < °o i3 given by an acceptance region

2
6r,n > C, If the Type I error is controlled at o<, then C = Oox la&(ar)/Zrn

Inspection of this atatistic reveals that if n > r, X a is weighted more

heavily than the sarlier observations 31‘ n”xzﬁ IRETERE SN This would

lead one to suspect th:t estimates based only on X, n (i.e., the rt'h
1]

failure time only) may be highly efficient when compared with estimates

based on ﬂr and further that rules of action based on Xn bhave O0.C.

B v

curves very close to those based on ) r.n’ This question has been atud-
9
ied in detail in the estimation case in & report by B, Epstein entitled

"Egtimates of mean life based on the rth

smallest value in a sasmple of
size B drawn from an exponential distribution", Wme University Tech-
nical Report No. 2, July, 1952. It is shown in this report that a highly

efficient estimate of € 41s given by 5 r.o%r,n where

&.n = 1/;. 1/8=j+d. /5r.nxrgn is an unbiased estinate of O

It can be verified reacily that

(2B.2) Var (ﬁrﬁn xr,n) = Kr‘,noa
where .
@y - e G st
G J= =

Efficiency of the estimator ﬂr,nxr‘,n relative to @ren is given by



e T I O ORI AP SRty s o+

P

20'42 . l

(2B.4) By, -Var'a ""(ﬂrnr,u .o
' r.n

In the report to which we just referred, tables are given for 4 atk
b ] I‘,n
and Br,n for n = 1(1)20(5)30(10)100 ani r = 1{(l)n. An inspection of

these tables reveals that E. ron > 2 .9 for 5 < %, Furthermore it is shown
that ]
B, g 2 49990 it E= 0 |
"> ,9960 1t "= 2
"2 .9893 it "= .3
" > ,9784 iz " e o4
"2 .9608 it "a .5
"2 09329 if "= ,6
"2 .8874 i "= .7
"> .8094 it "= .8
"> 6548 ir "= .9

It has similarly been observed that the 0.C. curve resulting from ucing

the acceptance region /&_ o¥r.n > C virtually coincides with the 0.C,
] [ ]

curve associated with 61_ n > C.
. ?

ke g Ao 2t n o
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Bibliography for Sections 1 and 2 of Chapter I1

B. Epstein and M, Sobel, "Some tects based on the firat r ordered
obssrvations drawn from an exponential dietribution"T Stanford
University Technical Report No. 6, Wayne University Technical Report
No. 1, March, 1952.

B. Epstein, "Estimates of mean 1ife based on the rth smallest value
in a sample of size n drawn from an exponential distribution”,
Vayne Univarsity Technical Report No, 2, July, 1952.

B, Epstein and M, Sobel, "Life Toutiﬁg", Journal of the American
Statistical Association 48, 486-502; 1953.

W. Feller, "An Introduction to Probability Theory and its Applicationsa",

Vol. I, Second Ed; John liiley =ad 3ons, 1956. (See particularly Chaptor
17,)
"Pables of the Cumulative Binomial Distribution™, Vol. 75, Annals of

the Computation Laboratory of Harvard University, 1955,
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ndix 2 C

A detailed discussion of truncated replacement and non-replacement
tests is given in the following paper:
B. Epstein, "Truncated Life Tests in the Lxponential Case', Annals of
Mathematical Statistica 25, 555-564, 1954,

Section 2 of thin paper, pp. 555-558,gives proofs of formulae (21)

through (28) inclusive.

Appendix 2 D

Tests of the form 6} n > C considered as truncated tests,

4‘

The following material follows very closely section 3 of the paper
cited in Appendix 2 C. |

Vle have seen that when testing Ho : Q= Oo against any sinmple
alternative % = 01(91 < Go)“ the ""best" region of acceptauce for Ho
(in the sense of Neyman and Pearson), based on ike firast r out of n
ordered observations from an exponential distribution,ié of the fora

-
ﬁ},n > C, where s;,n = [ %:T %t (n«r)xrﬂn]/r in the

non=replacement case and ) = nx ,n/r in the replacement case.,

r.n r

One could interpret the decision rule 6: n > C %o mean that we
?

wait until time x_ _ (the time whem the r'" failure occure), then
]

compute ] n and make the appropriate decision. However, in the avent
that we are able to observe the life tort comtinuously, this clearly
wastes information. Xndeed, we assert that, if continuous observation
is taken into account, we can frequently shorten the waiting time to

reach a decision and reduce tlie number of itens failed. To see this we

r
note that ‘Br’n > C becomes E21-1 Xy nt (p-r) ‘rwnj >rC 4n the
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non~replacement case and ax

> rC in the replacement case.
r,n

But [ P + (ner) x ] 1s the total observed life up to time
f:r 1,0 %

I

b J in the non-replacement case (note that , __ x is the total
rea =1 i,a

life of the r items which failed and (n—r)xr n i the amount of
?

time lived by the (n.r) items which did not fail) and ”xr,n is

in the replacement case

the total observed Zife up to time -
]

(note that in the replacomenf case n items are constantly on test for
a length of time x_ _). Thus accepting H_ when O > C is equiv~-
o o b 29

lent to accepting Ko if the total life obsorved up to time X n is
L]

greater than rC, Suppose now that at some moment t  there are

exactly k failures, O < k £ r~1, and that the observed total life

4

- A
V(t) given by V(t) = Xt (n<k)t in the non=ieplacement case
12l ’

and by V(t) = nt in the replacement case exceeds rC (Nots that in

k
the non-replacement csse ) _ X is the amount contributed to V(t)

Py i.n
by the k items which failed by time t and (n-k)t is the amount
contributed by the (n-k) 4items which have not failed. In particuiar,

{

it s = x " then V(xr

) = (n-r) Th ¢
o0t 2 = xi.n + (n=r xr n* e formula for

v i=1 9
V(t) 4in the replacement case is obvious.) Since V(t) is monotonically
increasing in t, we know that V(xr,n) 2 V(t) > rC, and therefore we
should stop the life test at time ¢t and accept Ron More genor;ily 8
decision rule having precisely the samoe 0.C. curve as 6}¢n > C but
requiring on the average fewer failures and a shorter decision time is

based on terminating at total observed life = min (V(’i n)" ©C) (where
1)

both r and C are preassigned). If the experiment is terminated at
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total life V(x, ,)(i.e., if the total life required to observe r
failures is < rC), then the action in terms of hypothesis testing is
the rejection of the null hypothesis. If life testing is terminated
with total life = rC (i.e., if V(xr'n), the total life required to
observe r failures, exceeds rC), then the action taken is to accept
the null hypothesis. (lote that in the replacement case (V(xr.n)‘ rC)
becomes min (xr’n; -i?—) where xr’n is the time of the r'D failure
and -ﬁ?— is a truncation time.)

Described in more detail the decision rule is as follows:

(a) Continue life teasting so long as V(t) < rC and 0 < k < r-l.

(b) Stop experimentation at time t with acceptance of H a8
soon as V(t) > rC and 0 £ k £ r-l,

(¢c; Stop experimentation at time xren with rejection of Ho
it V(t) < rC ”for all ¢t < xrun“(Note that acceptance of Eo takes

=)

e now proceed t5 flnd some uvameful nroperties of the truncated rule

Place botween failure times, and always before time S -

based on V(t). To find these properties, we remark that (defining =x
8

ogn

as zero)

. ,
(20.1) . x,  + (n-r) x a =g (2-141)(x, ~-x )

in the non-replacement case and

(2D.2) nx = ‘.__ n(x
¢ r,n eﬁ;l

)

1,6 4e1,n

in the replacement case.

Introducing (as vas done in Appendix 2A) new random variables defined bj

(20.3) Yy =0% and y, = (n'1+1)(*i.n"x1~1.n)“ 1=2,3,000.0

in the non-replacement case and
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(ZDJb) ’1 = nﬁgn and yi = n(xian-xi_lgn)g 1 n2:3060eyr

in the replacement case.

V(%) > rC can be written -as

&

(2Do5) L.- y’ > rc':
is)

%e saw in Appendix 2A that the y; are mutually independent rendom

variadbles; each distributed with common p.d.f. % ‘wx/()’ x>0, @ >0,

. If we interpret ¥, &s the time interval betwsen the (i-l)at' and

1"“ event in a Poisscon process havirg mean cccurrence rate A= 1/0,
3

it i3 clear that , L > rC, if and only if Ik, the number of eveuts
is=]

in a time interval of length rC, is 0 < k £ r-l. If the number of

r
events in such an interval is 2 r, then ) ¥; S rCc Thus the yroba-
1=l

bility of reaching a decision requiring exactly - f = k faillures is

(2D.6) Pr( f= kle) = pllippdc & = 0,1,250..,7-1

-]l
Pr(f s rlo) = 1 -t.o p(k;,uo) = 1 aW.(rGI:/é)g
k

where Ve Y rC/6. Tke expected number of observatiorns to reach a decision

is given by
(2p.7) Ee(f) = g k_Pz'-(y = k|0) a /372:-«2;/6) + r[l-y(rwlg/é]ﬂ
| Eo(ﬁ:)). the expected total life in roaching a decision,
is given by |
(20.8) Eg(V(t)) = GEG()s ‘

BO(T). the expected waiting time to reach a decision,is given by

v
e e ——
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(20.9) 1o(0) + L Prlp=x|@) Zglx,)
vhere Eg(Xy n) © § E:_Fll-__ in the non-replacement case and

Eg (xk,n) =2 xO /n 1in the replacement case. In the replacement case

{2D.10) Eg(T) = é Pr(p = k|9)k9£
' ) ) Ea(v(-t'))
- %E e(P) S . n *

Finally L(® ), the probability of accepting® -60 when O 1is true,
1s given by L (@) = #(r-1; pe). Note that in the replacement case (25)
through (28) coincide with what we have Just done if we set T = rC/n
end r = r_. If this is done then Ag = nT,/06 = rt/o g -

Remark: In the above we considered a test based on é r,n as a truncated

test. This involved consideration of total life. The assence of what

was said 1s a special case of the following: Suppose that the experimenter

wishes to expend no more than total life V* in experimentafion and that
he employs the following rule of action: Reject if r o failures occur
before total life V# has been used up; accept if fewer than r, failures
occur by the time one has observed a total life of V¥, In the event that
one rejects, experimentation stops at V( ‘rr )}, the total life observed
up to and including Tro, the roth failure tgme. In the event that ome
accepts, the total life observed will be W*. It follows directly from
the properties of Poisson processes that the probability of reaching a
decision requiring exactly P = k failures is

(20.11) Pr(p =k|©) = p(k; Hg), k = 0,1,2,...,70-1

and
r.-l

Pr(p = xro | 0)=*1- o: p(k; "9) =] - "(1’0'1:“9):

ko
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where ,«° = V*/0. 'Mc¢ expected number of observations to rcach a decision

is given by
(20,12) By(P) = s (r-2uag) + v [1 -7 (x-1549),

so(v(t)), the expected total life in reaching a decision is givon hy
(2D.13) Eq(V(t)) = CE,(P)

and L(Q), the probability of accepting © = Oo when O 4o true,is

given by r ol
-2

(2D.14) L(O) = 7 (ks ) = T(r =1148).
k=0

The considerations involving ﬁr n OTe @ special case of what we have
v

Just done, with V®* = rC and r, = Fo

Appendix 2 E

As an illustraticn of the theory presented in Section 3 and Appendix
2 D we coneider thrae test procudures which have virtually the same
operating characteristic curve. Specifically it is assumed that we wish
to test Bono = 1500 hours against 111:91 = 500 hours with &« = ,B' - 05
l.0., we want L(O)) = l-t= .95 and L(6,) =,B 2 ,05 (actually we
bave to be satisfied with L(Ol) £ .05). The three procedures are:

(Q) 20 items are taken at random from the lot and placed on life
test. Items which Zail are not replaced. At each moment ¢, compute

the total life

v(t) = ZL__ x, ~+ (n-k) t, where k is the number of

i.,n
i=l *
failures which have occurred before time t and n =20 (if i = O,
define total 1ife as nt), If V(t) exceeds 8150 for any k, O £k<9,

stop the experiment at time t and accept Ho(o = 1500 hours). Otherwise

[

b i ooy 3 i o

b e v

adian
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the action taken is to reject. This test -is equivalent to accepting

B, 1f 90,20 > 815 and rejecting N if °1o,20

Table 5 we see that if 0°/01 = 3,% = S= .05, then r = 10 and

< 815, (From

J{i‘£2r)/2r = .5426. Therefore the acceptance region is
930,20 > (1300(,5426) = 815.)

(b) 20 items are taken at random from the lot and placed on tast,
Failed items are not replaced. If min [xlo.ao° 5407 = S40 (d.e.. the
tenth failure occurs after 540 hours)gtruncéto the cxperiment at 540
hours with acceptance of Boo If min 5110'20,5403 = xlO.ZO (i.0., the
tenth failure occurs before 540 hours), truncate the experiment at xlo.zo
with the rejection of Hoo (Prom Table 4a, using r = 10, n = 2r = 20,
we sece that the truncation time T, = 1500(.363) = 540.)

(¢) 20 items arc taicen at random from the lot and placed on test.
An item which fails is replaced at once by a new item from the original
lot. The time Ii.n when the 1‘“ feilure occurs 1; measured from the
beginning of experimentation. If min [xlo'zon#07.53 = 407.5. truncate
the experiment at 407.5 hours with the acceptance of Hoo If min
[110'20,407.5] = xlo'aoﬁ truncate the experiment at xlO,EG
rejection of an (In the replacement case the truncation time To ia

with the

given by O&*i_,k(Zr)/Zna This gives 407.5 for the value in this
problem,)
In the table below we give L(O); Eo(r)g and EQ(T) for the

tests A, B, and C for soclected values of O.

e e, e AT e s
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i

O
Properties of Three Tast Procodures

e L(®) Jl Eg(r) Eg(T)

° A B c A , B C A B c
250 s0000 | L0000 | 0000 || 10 10 10 167.2 | 167.2 | 125.0
500 2030 ~Olt3 030 9.93 | 9.9% | 9.93}|331.k | 331.6 | 2h8.3
7% 355 0365 2355 9.10 | 9.25 | 9,101 kkhe? | LS3.5 | 3h1.3
1000 ~698 o702 698 7.68 | 8,06 7.68}|181.8 | %09.1 | 384.0
1250 876 877 876 6:39 | 6,93 | 6,39 1484.8 | 529.2 | 99,3
1500 »950 950 <950 5.39 | 602 | 5.39( L7he7 | 536.0 | W0k.H
1750 979 I 979 979 ho6h | 5.30 | Lo6h|lh66.0 | 938.3 | L06.3
2000 +991 f 991 <991 hot | k73 | L.o7{jb58.3 | s39.F | Lo7.0
2250 «996 ; 595 <996 3.62 | b.27 | 3.62|{h52.3 | $39.7 | ho7.3
2500 998 j 5§93 <998 3.26 | 3,88 | 3.26| b47.3 | 939.9 | LO7.k

T e R Lt A R, Rt Bt S oS £
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Appendix 29
Detailed proofs of the results on sequentisl life tests sketched in Section
b of Chapter II ave given in the following reference: B. Epstein and N. Scdel,
“Sequential Life Tests in the Bxponentisl Case," Anpals of Methematical Statistics
26, 82-93, 1955. In Section 2 of this reference one vill find & derivation of
formlase (31) through (39) inclusive. In Section 3 of the reference the basic
1dentity xa(v(t‘)) = 6 B (r) , relating the expected moment of total life obsérved

in reaching & decision sad the expected number of failures, is derived: This formala
holds in gsneral, vhether or not items on test are replaced.

Appendiz 20

1. Introduction

It is interesting to ask the question: How will truncation of the sequential
life test affect the Type I error G and Type II error P ? We know, from con-
siderations analogous to those of A. Wald, that the sequential life test procedure
based on using (31) vill eventually terminste. But this msy be inordinately ex-
pc_nuwintuuotcithcr'thctm involved in the life test, or in terms of the
aumber of itens failed, or both. There are asny situations vhere it is dnu‘s\h
and even necesgary that we place a definite upper limit on eith»r the m,or ,
of items failed or oo the total length of the 1ife test (or, if necessary om both).
In vhat follovs we study hov much one changss the Type I and Type II errore, if

. Varions
one truncates the sequential life test in Sussvwn® vays.

‘Remark: From this point on wé follow tlosely considerstions in Wald's book,

PP, 61-650
{

o o sk i v e mm s o2t

e e i i A



g

2,54

2, Truncation on the number of items failed.

Suppose first that ve set a definite limit, r,» on the number of items
mm. We cean achieve this by truncating the sequential life test at
rer,, .., by giving & nev rule for the acceptance or rejection of By:0 w8
when T, failures hava occurred if the sequentisl life test did not lead
to a decision for r st r, - A simple and reagonsble truancation rule after the
r;th failure is the following: If the sequential probability ratio test given
by (31) does not lead to & decision for r £ r, , eccept H :0 =9 after the

ro“th failure has occurred if

(26.1) logB<r logf-g-(-l'---l’-)v(x ) <o
] 91 91 9o ro -

and reject H (accept By: 9w 91) after the r_'th failure has occurred if

. .
- 1 1
(26.2) 0<r logee - (== - =) V(x_ Y<loga .
o 61 91 Go ro

Truncating the sequential life test after r, items fail will change the
Type I and Type II errors. They will no loager be G and B , the Type I and
Type 1I errors,respectively,in the untruncated sequential cass. The effect of
the truncation on the G and # depends, of course, on A

The larger cne makes Tyt the smaller are the truncation effects on
and B . lat us denote the resulting Type I and Type II errors as a(ro) and
B(ro) , respectively, if the sequential life test is truncated at r = r,
failures at the latest. VWe nov derive upper bounds for a(ro) and b(ro) .

To obtain an upper bound for a(r o) ve have to consider the cases in
vhich thé truncated life test lesds to the rejection of B : 9 = 5 , vbile

the non-truncated sequential life test leads to the acceptance of B, .

bt B 0 B S S € SRR ALy o+ YT 0 ST
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‘mm that B, holds (t.0., that 0 = 9°) s let po(to) be the provability

that the sample rendom function associated with a life test is such that che
truncated life test leads to rejection of E, , vhile the non-trumcated life test
leads to the acceptance of no + Clearly ve see that

(20.3) a(r)) ca+p(r) .

The reason for the 1noquaiity rather then the equality is that there may be
sample random functions associated with life tests for which the truncated life
test leads to acceptance of llo » while the non-truncated life test leads to the
rejection of 'Bo « To obtain an upper bound for a(ro) , ve need merely derive
an upper dbound for po(ro) . Assuming that 'Ho is true, po(ro) is the
probability that the random function. associated with a life test is such that
the following three conditions hold simultaneously:

| ) | 90 1 1

(1) 10‘3(’1“5" (6‘-’"9-) V(t)<1°‘A » for r-].,z,oo.’ro"l

1l 1l o

and for all t<x_ ;
Yo

9
1 1
(11) o«<r log z> - (= - =) V(x_ ) < log A ;
-] 61 01 ’eo T, ’
and

(141) When the sequential life test is continued beyoug the ro'th failure,
it terminates vith the acceptance of & o

Assuming that H  is true, let So(ro) be the probability thet condition
(11) holds, i.e.,

. - o - 1 1
(@.3) Byr) =P {021, 108 2 Vi Y <eale -0, ]

-

© i e st
e
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Since the probability that (i1) 1s fulfilled cannot be smaller than the pro-
bability that conditions (1) , (11) ena (111) ere fulfilled simultssecusly,

ve bave
(20.6) | Polry) 2 po(r,)

and therefore,

(26.7) alr,) <@« f(x,) f

Thus Q + Foﬁro) is en upper bound for a(ro) . We shov further on that

Fo(r ) can be comuted sasily.

To obtain an upper bound for b(r ) » let us assume that B,:

true asd let p)(r.). then de the probability that the truncated life test leads

9-31 is

to the acceptance of H vhile the non-truncated life test leads to the re- v
Jection of B, . In other words, h(r ) 1is the probability (assuming that |
6= 91 is tme) that the sample random function associated with a life test

1s such that the following three conditions hold ainltanomly:

e .
(1) m'<r1“§-1°"(eil"9%-) V(t)(lﬂl,for r-l,z,...,l‘o-l
o

b R by o b e e

A T e, i

and for all t<x_ ;
Yo

” (moa) . Oo 1 1
(11) J.o¢B<rologa—1-(3I--o—°-)V(xro.)50;

N e
s\ i .

(111) If the sequential 1life test is continued deyond the r,'th flnm,
it umuulviththnccma l1 6 -91 .

clurl;

('! (20.9 D(ro) <P+ h(ro) .




e

2,57

8ince 1t is dirficult to determine h(ro) s Wo give a simple upper bound first.
Assuming that B, 1s true, lat B (r ) be the probability that condition (11)
holds, i.e.,

o
(20.20)  Py(r.) = Pr {10g B < r_ 1og 5-;’: . (5’-'; - el) v(xro) <olowe} -
[+)

Then Fl(ro) > h(.ro) and hence
(26.11) b(ro) <P+ Fl(ro) .

We now shov hov to compute Folro) and Fl(ro) . To compute Fo(ro) s We
recall that if r, 'is preassigned, then, under the hypothesis that B:6 =06,
is true, w(xr )/e o 18 distributed as 'l.a ) . Comnsequently,

(+]
2(r_log k - log A) 2r_log k
(26.12) Fo(ro) - Pr o :8- T < 1'2(2’0) < "'%‘-T"}

vhere k = 90/91 . |
In & similar vay one can compute Fl(ro) . It r  is preassigned, then,
under the hypothesis that Hy: 6 = 9, is true, 2V(x_ )/o, 1s distriduted as
°
f(er °) . Consegquently

(20.13)

&klogk &(r_ 1 k;l, B
B P {=2pey— <er) < - -2 :‘-r = J

Thus ve can summarize our results as follovs:

2(r J.os k - log A)

(2G.1%) | a(r )<0L+Pr {_

and ol
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log k 2k(r_ log k - log B)-
4 (20.15) B(r,) < B +Pr {f-";-.-l;‘— < Wiar,) < - :‘ =1 1

It is our fueling that the upper bounds for a(ro) and 3(:-0) that we hnvt
cbtained are substastially above the true values of o(r)) snd B(r.) .

It seems sppropriate at this point to give a mnpficd. example. cmm
the probles of testing H.: 0 =0, agaimst H: 6 =0, vith 'a;b- .05 eod
ke OJOI = 3 .  One can resdily verify from Teble 9, tﬁt [ ﬁ-umﬁf&’, 1ife
test requires r « 10 . The hypothesis that § =@  is accepted if
v(xm’n) >0, ‘x_""_”'(_eo)/a ~ 5’.526% , and rejected otherwiese. l;o\ lot us see
vhat hapjens in a eequential life test for the four truncetion number of failures,
r,=10,15,2,%.

i o 1 e Pt 5 MR A

1 ro.J.o,w'm

a(10) < + Pr {20 log 3 - Log 19 < X3(20) < 10 20g 37

=a+Pr {8.05 <¥3(20) < 10.99} ¢ .05 + 0% w 209

B(10) <8 + Pr {30 1oz 3 <x%(20) < 3 (10 Log ? -» 1og 19)}

8o rr {12.96 g'f(aouu.n}u 95+ .00 e .09,

B T T SV

It .l'ol'l"p then

a(15) sa e Pr {15205 3 - og 19 <7M) <15 20g 3]

=P (135 < () < 16,48} ot .05 + 083 = .073
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B(15) < B + Pr {43 log 3 <7E(30) < 3(15 2og 3 + og 15!}

=84+ Pr [49.44 <2(30) < 58.26} ¢ .05 + .015 = 065 .

It. roﬂaogm

a(20) <& + Pr(20 log 3 - log 19 < X2(40) < 20 log 3)

- @+ Pr(19.08 < X2(40) < 21.98) & .06

B(20) < B + Pr { 60 log 3$f(%)<3(20 log 3 + 1og 19)}

=B+ Pr {65.52 <H(40) < .76} & .055

If r_ =30, then

a(30) <G + Pr(30 1og 3 - log 19 <A2(50) < 30 log 3)
= @ + Fr(30.04 <‘X.2(6o) < 32.96 &2 051
B(30) < B + Pr { (90 log 3 <¥2160) < 3(P0 log 3 + log 19)}

« B + Pr(96.88 <77(60) < 107.70) D¢ .051 .

Thus ve ece in this a.fan.:le.that if ve truncate the gpequential life test

at r - 30 , i.e., 3t ; times 10 , the r required for the non-sequential life

ER IS PN, e e
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test, then a(ro) is spproximately equal to G .and b(ro) is approximately
equal to B . Tables are being calculated for other values of G, and ao/el
and the indications are that what we observed in the example holds mare gensrally.
That 'is, truncation of the ssquential life test at three times the number of
failures required in the non-uquenﬁal life test vill have vﬁ-tully no effect

on either @ or B .

3. Truncation on the total cbserved life.

We have up to this point truncated the sequential life test by setting a
definite limit on r, s the number of items failed. We nov wvish to truncate
the sequential life test by placing & definite limit V_ on the total observed
life. We can achieve this by truncating the sequential life teat at V(t) » v,
i.e., by giving a new rule for the acceptance or rejection of lloz 6= e° wvhen
V(t) = V, if the sequential life test did not lead to & decision for Vv(t) < v, -
A simple and ressonable truncatioa rule at totel life V o is the folloﬂng:
If the sequentisl probability ratio test given by (31) does not lead to a finmal

decision for V(t) < V,s Sccept H :0 =0 st total life V_ if

, eo l1 1
(mclé) 1038(]'1086-;-95'-?) VOSOQ

1 o

and reject H, (accept By: 0 » 91) ir

(m:.)' : o<rl ?-2¢(1--1-)v < log A
’7 “91 a'; eo o “ .

Truncating the sequential life test at total life vo vill change the Type I
and Type II errors. They vill no longer be G snd £ , the Type I and Type II

e A . RO s

e
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errors, respectively, in the untruncated uqu.nﬁul case. The effect of the
truncation on G and P despends, of course, on v, .

The larger one makes V, , the smaller are the truncation effects o G
and B . Let us denote the resulting Type I and Type II errors as a(vo) and
B(V,) , respectively, if the sequentisl life test is truncated at total life
v(t) = V_ st the latest. We now derive upper bounds for a(vo) and B(vo) .

" To obtsin an upper bound for a(vo) ve have to consider the cares in
wvhich the truncated sequential life test lud's to the rejection of ~B‘:,: 0= eo
vhile the non-truncated sequential life test leads to the acceptance of B, .
Supposing that B holds (1.e., that X c’) , let po(vo) be the pro-
bability that the sample random function associated with a life test is such that
the truncated life test leads to rejection of Bo ,» vwhile the non-truncated

life test leads to the acceptance of Ho + Clearly ve get
(26.18) a(vo) £a+ 'o(vo) .

The reason for the inequality rather than the equality is that there may be
sample random functions associated ﬁw life tests for vhich the truncated
life test lerds to acceptance of 'o ,» while the non-truncated life test leads
to the rejection of H . Assuming that B, is true, Po"o) is the
probebility that the random function associated with a life test is such that
the following three conditions hold simultanecusly:

0
(1) logn<rlo¢53—(al-'-—e—1-)V(t)<lo¢A,forV(t)<V°
1 1 o
o
: o 1 1
(11) o<rloss;-(-6---e—)vo<logA and

(20.19) 1 o

(111) when the sequential life test is continued beyond total life

vo , it terminates with the acceptance of .o .
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Assuming that E_ 1is true, let Fo(vo) be the probability that comdition
(11) m" 10.-'

) :
(26.20) ;o,(vo).r:{o<r1ogb-ff(51-1--51-;)VO<1ogA|9-9”} .

Since the probability that (1i) is fulfilled cannot be smaller than the pro-
badbility that conditions (1) , (11) , and (iii) are fulfilled simultaneously,

ve have

(26.21) o B(Y,) 2 (V)
and, therefors,

(26.22) a(.vo) <as+ Eo(vo) .

’

Thus G + E:'o(vo) is an upper bound for a(vo) . We show further on that
F o(vo) can be computed easily.

To obtain an upper bound for B(vo) » 1ot us assume that H: e‘-'el , 18
true and let h(vo) then be the probebility that the truncated life test leads

to the acceptance of H o ? while the non-truncated life test leads to the

‘rejection of H_ . In otter words, p (V) 1is the probability (assuming that

0 =9, is true) that the sample random function associated vith a life test is

1
such that the following three conditions hold simultaneously:

' ]
(1) 103!(:10565-- (b!‘;-ali-) V(t) < log A, for v(t)<v°
° B

(26.23) 1 1

8
(11) 1o¢3<r10¢5£1’--(5:-3;)v°50

SNUUVRDNURENSE
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(26.23)
. and
(i11) If the sequential life test is continued beyond total life vo ’

it terminates with the acceptance of le (- ] 91 .

(26.24) Clearly a(vo) <B+ h(vo) .
Since it is Aifficult to determine Pl(vo) ve give a simple upper bound first.
Assuning that B, is true, let Fl(vo) be the probability that coadition (ii)

holds, 1i.e.,

- % 1 2
(20.25)  py(V.) = Pr {logB<rlogq-(F; ‘é")"o5°|°"°1} .
Then ' °
(26.26) V) 2 fl(vo)
and hence
(26.27) B(V,)) < B + (V) .

We now show how to compute Fo(vo) and Fl(vo) . To compute (.’o(vo) ,
we recall that if V ° is preassigned, then under the hypothesis that
HO: (- 00 is true, we are observing a Polsson process with rate parameter

A, = 1/e° for a length of time V_ . Consequently,

v , v

o o
.28 5.0 o b (k-l)i;- ) (x-1) 5; +log A Z ,( v,
o2 - £r - r; =—
fo'o log k log k mo<r<n°' %

.
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2] v v '
o o 1) =2
vhere k-;-; » noc(k-l)s;/loc k and n, - (kl)eoq»log,A /1o¢k .
In & similar wvay one can compute Fl(vo) .+ If V, is preassigned, then under
the hypothesis that Blz - al is true, we are observing a Poisson process with

rate parameter = 1/8, for a length of time V_ . Consequently
1 o f

Vo : Vo
(x-1) 5+ log B (k-1) 5 - v
(26.29) §,(v,) = Pr 2 <r< 21 = § : P 2
log k log k Y <r< n, 1

(=] o

v B v
vhere m . [(k-1)3-9+10¢3]/lo¢k and nln(k-l)a-g/logk .

Thus we can sumsarize our results as follows:

. ' v
(26.30) a(v)) <+ E : p(r; 3°)
mo <r< no Q
and
v
(26.31) B(V,)) < B+ E : p(r; 5=
. m <r<n 1

where m,,n,,mn ,n are defined above. We are quite sure that the upper
bounds for a(vo) and a(vo) that we have obuine& are substantially above the
true valuss of a(vo) and B(Vo) .

We nov give a numerical example to 1nuotratoA wvhat we have just discussed.
Consider the problem of testing lo: f = oo againsat 81: 6= 61 ,vith CefP = .05
and k = 90/01 = 3 . Let us see what happens for truncation times V_ such

that Vo/é°-3,6,9,12,and15.

If V /8 =3, then

S e B b aiiess B T
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a(v,) <o+ Z : #(r; 3) , vherxe
l° T no

(x-1) Yo / log k = 6/1.10 "
LA ;; og k= J0 = 5.45

o

v
n, = Ek-l)ag #IOSA] /10‘k-%-%-8.13

a(vd) < .05+ é p(r; 3) = .05+ .08 = .13 .

B(v B H ’
(0)5 +.1¥n1p(r 9) , vhere

v
m [(x—1)52+ 1o¢n]/1ogxa. [6 - 2.9u]/1.1o
]

= 3.06/1.10 = 2.78

v
nl.(k-l)bg /10‘k-5-“5 .
o

P(Vy) < .05 ¢ é p(r; 9) = .26
=
then
a(Vo) <a+ Q p(r; 6) = .05 + .039 = .089 -
n .

b(v,o) <Be+ E; p(r; 18) = .05 + .023 = .073
T'n
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v
If;f-ﬁ',thln

o
a(v )< a« ‘é p(r; 9)

and
B(V,) <P+ ﬁ p(r; 27)
r=l
vO
It "~ 12 , then
[o]
af(v ) <as é p(r; 12)
b &
and
B(v)<B+ ;: i p(r; 36)
v
It 5215, then
o
2
a(v ) <a.+ E; p(r; 15)
aad

B(V)) <P+ & p(r; 435)
=25 '

Thus we see in this example that if we truncate the sequeatial life test

at ¥V =156, , then G(Vo) and ﬂ(vo) mcmoxintelyequqltb G and

<055

052
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P » respectively. For the non-sequential life test, truncation ocours at
Ve 5.h260, . Thus in this example truncating the sequential 1ife test at
three times the V required for the non-sequential test has virtually no
effoct on elther « or 4 . Tables are being caloulated for other valuss of

%y f, and 9/0; and there are indications that what we observed in the

exanple holds more generally.

Truncation on the number of items tailod and total life.

Now it may happen that we would like to truncate the life test both with
respect to the number of failures r, and total 1ife Vo o We first note that
our truncated sequential 1life t ests considered up to now are of this kind.
Indeed, suppose that one truncates at re=r . Then we assert that this induces
a Lruncation on total life,

°°
To Mg g

Vo--r——r}--Sro. o [ See Figure (S)f']

%°%
Thus if the random function representing the life test is sich that one attains
total life V, (reaches BC) with fewer than r, failures, then one knows that if
one continues the test until T, failures ocour then the sample random function
must oross either BD §r DC and in either case we would accept 8° o Hence if
one attains total life V, ™ 8 r, with fewer than T, failures, one can stop
with aoceptance of Ho o Sinmilarly, if one truncates at total life V = 'o s then

we assexrt that this induces a truncation on the mmber of failures

9
-V 1 _42 Qay . .
To = Volg- - g/ 108 g7 = Ve [ See Figure (6).]
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Thus 12 the rendom function represnting the 1ife test 1s such that the r 'th failure
occurs before total life V (1.e., reaches CG ) , thea one knows that if one
continues the test until total life vo » then the sample random function must
cross either GN or CH end in either case we would reject xo . Bence if
the ro'th failure occurs before total life v° one can stop with the rejection
of lo .
Suppose now that one preassigns both the number of failures r, and total
life V_ and truncates the sequential life test at V=V, and re r, - Then

from the foregoing one can impose the following equivaelemt truncatioas:

-]
(1) Por r truncate at r" « min E"" ’ *Vo(alé -51—)/103 aﬂ = min [ro,vc/l]
1 o

T log 3-?-
(2) Por V truncate st V" u min vo’T'__'I& = min [Vo, aro],
a-1 a-o
Clearly r* and V* will meet the condition
(3) P evE-) / log ;2 -v/s .
1 ] 1l

[ See Figure (7).] |

The truncation ruJ.o is as follows: 1if the sequential probadility ratio test
given by (31) does not lesd to & decision for V(t) < V* amd r<r* (i, if
neither AB nor FG are intersected or crossed) , then if the sample random
function associated with the life test hits the boundary V « V' (reaches XC)
before resching r = r* (CO) , accept E_ . If, hovever, the sample rendom
function hits the boundary r = r* (CG) before reeching Ve V' (2¢) ,
reject E  (sccept B)) .

e n e < et ————— e S
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Truncating the sequential life test at failure number r* and at total
life V*, i.e., accepting E, , if the sasple random function sesocisted vith
the life test meets AB or BC bdefore crossing PG or meeting CG , and
rejecting llo if the sample random function crosses FG or meets CG before
meting AB or BC , will change the Type I and Type II erros. lLet o(r* , v*)
asa B(r*, V') be the Typs I and Type 1I errors, respectively, associated
vith the truncated test. It is clear from vhat we have said above that 0.C.
curves associated vith truncating at r = r* , V= V¥, vhere V" u sr" coinctde
vith those based on truncation at r = r* or Ve V' . conuqunt;q a(r*,v*)
= a(z*) ana B(r", V") « B(V") . Upper bounds given previously for a(r%)
snd B(V") are automstically upper bounds for a(r*, v*) and B(r*,v") .
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Appendix 28
Probability of terminstion of the sequestial life test

at preassigned values of o and Vo .

It 1s interesting to ask the question: what is the probability that tbe
scquential life test will terminate with a number of failures less than or
equal to some preassigned number, T, s OF after total life less tﬁm or equal
to soms preassigned valus vo ? Using considerations anslogous to those in
Wald's bock on Sequential Analysis, pp. 58-60, we can state the following
results vhich give lower bounds for the probability that the sequential procedure
will terminate with a nusber of failures r < r, for the two values 0 = eo
wd 0=8, - |

Consider the question of evaluating the probability that the sequential
life test terminates vith a number of failures < r, . Then using cousider-

ations like those in Wald, wve caen assert that

(2H.1) Pr(rsro | @ -90)_).&(1'0 10';-%_(61;—51-) V(Xr )ﬁlﬂ’ | O-Oo)
o o

e Ber)2i5 (1085 ~208)]
stace 2 ¥(x_ ) /oo 1s dtstributed as I (or ) under &, .
o

And gimilarly

' 0, ,
(am.2) Pr(r<r, |~ 0=0)>Pr ["o loc-a-s—(%- ,l';) v(xro)z logA|o -91]

arn( R (er)) < g (r, Jou k =105 4 )

e -
—
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since 2 V(x, )/o1 1e dtstributed as 2 (2r)) wnder H, .
°
In a similar vay wve can evaluate the probability that the sequential life
test terminates at total life V(t) < V, . We can give the folloving lower
bounds for the probability that the sequential procedure will terminate at
total life V(t)_<_v° for the tvo values 0 w0, and 0 =0,

6
(28.3) Pr(v(t) <V, | 6 =0_) > Pr(r log 5:.-(51-1--31-) V. <lgB | 6=0)
[«

v v
- E p(r_;;z-),vbcre » - [(k-l)a-g-rlognl/logk .

OSrslo o

Since under the hypothesis that By: 6 =8  1s true, ve are observing s
Poisson process with rate parameter Ao - 1/e° -for a length of tlu Vo .
Also e

N ]
(28.8) "Pr(V(t) <V ! 6 =0,)>Pr(r 1«53-.(5!; ..31;) V,210gA | 6=0,)
- vo vo
rzan(r;EI.),vherc e [(k'-l)e—;+1ogl\] /].ogk »

since under the lwpothcu; that 81: 6= _01 is true, ve are observing &
Poisson process vith rate paramster A, = 1/91 for a length of time V_ .

‘We nov give a numerical example to illustrate what we have just discussed.
Cousider the problem of testing B: 9 =6 against H:0=0, vith G e B =
= .05 and k-e°/01-3 « Let us compute lower dounds for Pr(rsro |0-0°)
and Pr(rsr°| 0-91) for ronlo, 15, 20, 29 , 30 and lowver bounds
for Pr(V(t) <V, |6 =0)) for '0/90'3 »6,9,12, and 15. Ve first

compute Pr( r‘rolai), 1el,2 for this example:

Y i b e



If r =10, then

Pr(r<10|o9e oo) > Pr(xa (26) > 10.99 + 2.9%)

= pr(%2 (20) » 13.93) = .63

Pr(r <10 | 6 = 6,) > Pr(%S (20) < 3(20.99 = 2.94) )
. = Pr(%2 (20) < 2k.15) = .77 .
It r_ =15, then

Pr(r<15 | 0 =0) > Pr( (30) 2 19:43 ) = .94

Pr(r <15 | a-ei)zvr(‘ff’ (30) < 40.65 ) » .90
If r = 20, then

o

Pr(r<20| 0« eo) > l’r('x.2 (%0) > 24.92 ) » .97

l’r(x-_<_2o|o-._el)_>_l’x-(’ﬂ2 (0) < 57.12 ) = .96 .

It r°-25,tlm:

Pr(r<25| 6 =6.)> (U (%) > 3062 ) = .99

¢ Pr(r<2510.8,)> PP (30) <73.62) = .98,
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It r°-3o,thon

Pr(r< 30| 6 =6.)>Pr(X° (60) 3 35.90 ) = 9%

Pr(r <30 | 0 =0,) > Pr( %% (60) < 90.15 ) = 992 .

Similarly we compute Pr(V(t) < v, | 6= 91) s 1 = 1,2, for this example.

v
Ir 5‘2.3,then
[+

Pr(V(t) <V | 6 =6.)2> E p(r; 3) , vhere
' 0rm

v
A = kk‘l) —o' + 1“ B] /’.QE k w© [6 - 2.9’5] /1.1 - 208 .
o Go

Bence

Pr.(V(t) SVO | 0= oo) > zp(rs 3) = 42

and

Pr(V(t) <V, | 0 =06,)> ) p(r; 9) , vhere
r

.- [(k-l):—oc-logA] /Iuk- [602.9&]/1.1-8.1-
(-]

Hence Pr(v(t) < vg | 0 = 91) 2> g pr; 9) = 55 .

X Yo 6
1 4 - then
a: »

e -,




. snd

2,

Pr(v(t) < Vo | 0 = 9°) 2 ip(r; 6) » _.85

Pr{v(t) <V, | 8 = 91) > : p(r;18) = .908 .
ral3
v
It 2.9, th
oo en
1
Pr(V(t) <V, | 0 wb ) > fé’ p(r; 9) = .926
V() S ¥, 1 0 = 0)) 2 ) ol 27) = . 956
v
? 2wl2,
I 5 then
Pr(V(t) <V lo=0))> gp(r; 12) = 979
Pr(v(t) <V, | 0= 91) Zg p(r; 36) = .986 .
v
g 5-3- 15 , then
Pr(v(t) <V, |0 =0))> .g: p(r; 15) = .989

Pr(v(t) < v, | 0w 91) > .g p(r; 45) = .996 .
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Tebles for the probability that a sequential life test will terminate by
°

and Vo are being computed for other values of & , f and

o e it S
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Appenaix 21

Upper and lover bounds for L(6) and l.(r) .
The formulae for L(#) and t,(r) » Given by (37) and (38), respectively,
are spproximations to the actual L(6) and actual Eg(r) arising from the use
of the sequential rule specified by the inequalities (31). The question arises
as t0 how good these approximations are, A modit;cation of the results of Wald on
bounds for the 0.C. and ASN curves in the binomial case and of results of
Herbach on the discrete Foisson yields the following bounds on the actual L(6)
and Be(r) :
h | h
A =1 kKA) « 1
(1) < L(6) <
AE ;E * ’

< h $ 0 (that {s, for 6 % s) ,
- (xA)" -

log k-0(1/8, - 1/ ) 4

{

vhere the upper inequality signs hold for € < s and the lover inequality signs

(11) e logB+ [1 - L(6)] log A ji} ,(r)

sV aA

}LO B+l -L(6)l{log A + k
log k = 0(1/91 - 1/o°)
hold for 6 >8 .

One unpleasant feature of the boundt'gtm in (41) 1s that they 1@110
1(6) , vhich is unknown. BHRowever, this matters little iu actual prectice because
the limits on L(®) given by (i) are quite close together for ths range of
values of k and (&,B) covered in Teble 10. Thus, for exsmple, for

k=6/0,=3,0sp=.05, Aw(l=p)/a=ly, B=p/(l-0a)=1/19,

ve get that ;955L(o°)5.9a3 and .osgr.(ol)s.ose . The upper and lower

N ana s nea
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bounds for B,(r) given by ({1) are close together for 0 = 6, and
ocomparatively far apart for 66 . Thus for the case k= 3 and

O =f = .05, the difference betveen the upper and lower bounds is < .06
for 0 =6  and is about 2,5 for 8«6, .

The left side of (1) is the approximate formula (38) for E,(r) except
that the L(6) 1in (11) refers to the exact value and the L(5) 1n (38) is
given by the spproximation (37). In view of the preceding paragraph, the values
of B, (r) given in Table 10 are very close to the correct valuss, vhile the

o
values of Bo (r) are essentially lower bounds for the correct value. We

1 .
cannot say more unless we go through more extensive calculations of the sort

40 be described in Appendix 2J.

Appendix 27

Some exact calculations of L(6) and Ey(r)

Wald pointed out that in order to have a test of exactly strength (&,8) ,
the A and B 4n (31) should be replaced by A" and B , where
A'SA- (1 -B)/a anmd B’?_B-ﬂ/(l « a) . In the present case, vith
information availsble contimsously in time, B = B = 8/(1 - a) since the
acceptance of no involves no excess over the boundary. However; acceptance
of l1 does, in general, entail a positive excess over the boundary, and
all ve can say initially sbout A" 1s that it should lie betveen A 0,/6,

and A. Thus using 4 = (1 ~ B)/a instesd of A is an spproximation.
The approximate test based on using A and B is suitadle for all
practical purposes, since one consequence of the inequalities in Appendix 2I

-----

Since & and B are generally small (< .10 say) a procedure based on A aod B

5 AT it A
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provides essentially the same protection against errors of the first and
second kind as does the test based on using A' ana B°. However, the

use of A rather than A° 1in (31) will entail a emall inorease in E.(r) ,

particularly for 0 <s .

As a practical matter, one would usually be content with a test based
on (31) which uses A and B . As a matter of fact, this is what is done
all the time by people faced with a practical decision problem. f’or most
sequential problems, the problem of finding the A®* and B’ which will
give exactly strength (®,S) has not been solved. One has to rely,
in such cases, on the results of liald which indicate that the errors in-
volved in using A, B, and approximate formulae for L(0) and Ee(r)

are "reasonably" small.

In the problem at hand we know, in view of the continuous availa-
bility of information, that B* « Bs #/(1 - &) . Furthermore, formulae
are available for computing A° and for coaputing 0.C. and ASN curves
exactly. The formulae for accomplishing these tasks are nu:l.lablo‘ in
papers by Buraman and by Dvoretzky, Kiefer, and Wolfowitsz. While the
computational labor involved in any special case is exceedingly heavy,

the results of such computations do throw some light on how exact 0.C. and

ASN curves compare with those computed dy using approximations.

Formulae (4.17) and (4.23) in the Dvoretsky, Kiefer, and Wolfowits
paper (similar formulae are given in Burman's paper, p. 102) were used
to coampute |

(1) the exact 0.C. and Bo(r) curves for the sequential rule Cl)
with Bsg/(1 ~&) and A= (1 =f8)/& . This was done for the case
ks0/0, =3 and €= @'= .05, and

NIRRT IPIEIERL S et
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(11) A° (vhers A4 9,/0, < A° SA) such that the decision rule

A/ - &) < (oolol)’ expl - (1/0, -~ 1/0)) ¥ (£)] < A°

has an 0,C. curve for which L(Oo) sl  and L(Ol) s A exactly, and
then to compute E,(r) for the (B,A’) rule. This was done for the

cases &= pS= ,05 and k=0 /0, = 3/2,2, and 3, and also for & = /= .01
and k = 5 .

The result of (i) was

I“%’ - ,968, L(s) = .529, L(Ol) = ,051 ,

Eoo(r) = 3,03, E'(r) = 8,10, Eol(r) = 7.00 .

Computation (ii) gave

C=8 k A* Eg (r) E.(r) By (r)
) 1
3 13.25 2.94 7.22 6.21
<05 2 15.1 8.64 18.0 13.8
3/2 16.6 27.9 52.8 36.8
.01 3 68.9 5,00 17.5 10.5

Bearing in mind that the computations were carried through omly in

& small number of cases, one can make three cbservations:

(a)

Yor the case k=3 and €= &= ,05,

the use of B = 1/19

and A = 19 results in getting « = .032 and @' = .051 as compared

with & » & = .05 when one uses B’ = B = 1/19 and A’ = 13.25. Also,

Eo(r) is increased by .09, .88, and .79 at O = O, 8, O

1

respectively.
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(b) Of more intorsst is the fast that the exact values of | By(r)
for the (B,A’) rule practically coincide with the approximate values of
lo(r) computed for the (B,A) rule by formulas (38) and (39) and given
in Table 10.

(c) In the range of values of k = 00/01 and of « and S covered
by Table 10, a good guess at the value of A’ is the value A'® lying
midway between A and A/k , the upper and lower limits on A" . Thise
means that A'* = (kel) A/2k . On the basis of our limited calculations
we conjecture that in the range of values covered in Table 1, a sequential
docill:lon rule based on (31) with A replaced by A*° will have almost
exactly strength (d,A) . The values of Eg(r) associated with a

(B,A°®) rule will be given to a close approximation by (38).

Appendix 2K

An ajproximate formula for Eo(t) in the nonreplacement case

A useful approximation to Eg(t) in the nonreplacement case is given
by Eo(t)NO log (n/in = Eo(r)]) . This approximation is obtained by
replacing Eo(xk.n) in (42) by :I.ts’ approximation © log (n/ln - k1§).
Thus (42) becoues (43)

X (t) ~0 E [1o¢ (n—fz)]~o log l;":'!é';'(x'-)’) .

This ayproximation has been tested numerically by calculations on
truncated nonreplacement decision procedures, where the exact values of
I‘(t) can be computed and compared with the suggested approximation. The
agreement is closs. '
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TABLE ) f

Values of ;(fmafar)/Zr
&[0 .05 .10 .25 250 |
2 .010 052 .106  ,288 -693
2 074 +178 266 481  .83¢
3 01245 0272 367 .576 .89
b4 - 206 o342 436 o634 <918
5 2256 0394 .86 674 <934
6 «298 435 ~525 «703 <9LS
el 7 333 469  .556 726  .953
Bl s |.363 498  .582  .7mh  .959
3] 5 |.30 522 .64 .760 .963
w | 10 413 - 543 ~622 773 .967
t 15 - 498 . 016 .687 .818 .978
‘5’ 20 « 554 .663 <726 842 .983
=125 o 594 -695 s 754 .859 ~987
30 «625 .720 J774 «872 .989
40 «669 «755 .803 .339 «992
50 .701 <779 .824 901 2995
75 «751 .818 .855 :920  .996
100 .782 .8 874 9% 2997
Hote: This table is used in the following way:

rd
Accept 0 = Oo it er.n > 9;)(1_“(2r)/2r and reject otherwise.

Suppose, for example, that we want to discontinue a life test after
r = 3 fatlures have occurred and that we want the life test to be such that
& lot having mean life 00- 1000 hocurs 1s accepted with probability .90.
Using formula (7) and table (1) the region of acceptance is given by
A
95 o > (1600)(.3A7) = 367.
3
In words, one places n items on life test and stops testing after

3 items have failed. Ono then computes ’3.::' an estimate of the mean

S
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1ife after 3 failures, using formula 2 in the non-replacement case and
formula 3 in the replacemont case. One accepts the lot if 6> 367 and
rejects otherwise. Suppone, for example, that we place n = 10 items

on test, do not replace items as thny'fail. and that the first 3 failure

50+125+250+7(250)
times are 50, 125, 250. In this case 03,10 = +3 * = 3%52 = 725,

Since 725 > 367, we accept the lot.

e e e <
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_ IABLE 2(a)
i
( ' Values of Q@ accepted with probability p, when © = 1 4ias accepted with
probability .99. Rule of action is to accept it () n” :(299(2r)/2r

Ty

N ' |
N 299 295 290 .75 250 .25 210 .05 201
1 - 1.0 .19  ,095 035 .0l%  .007  .004  ,003 002
2 1.0 418 +279 0154 .088 .055 .038 .031 .022
3 1.0 .533 .396 .22 163 .11 .082 .069  .052
& 1.0 «602 472 +325 224 0161 »123 .106 .082
5 1.0 649  .526  ,380  .274 204  .160 L1400  ,110
. 3 1.0 683 -566 423 315 .am 193 170 .136
81 7 1.0 .709 .598  .458 349  .272  .221  .197  .160
g 8 1.0 .730  .62b 488 379  .300  .247 .21  .182
o | 9 1.0 747 646 513 L 4OS  .325  .270  .243  .202
. |10 1.0 .761  .66h  .535 k27 .37 L291  .263  .220
2 |1s 1.0  .809  .726  ,611  .510  L430  .371  .342  .29%
é 20 1.0 .836 .763 .658 .563 1486 428 .398 ~ 348
( 25 1.0 -855 788 692  ,602 .527 470 4h0 390
1.0 .868  .807 .717  .632  .560 .50k 474 . h24
4o 1.0 -887 .833 0753 . 675 -608 554 «526 1477
1.0  .899 851 777 . 705 642 .591 563  .516
75 1.0  .918 .878 .317 .75h «699 .653 .627 «583
100 1.0 +930 .895 -840 .785 <734 2692 .669 .627

Note: Tables 2(a) through 2(e) give 0.C. curves associated with test pro-
cedures of the form: Accept if ‘er,n > )(iqx(ar)/ar, Time units are
choaen in such a way that the probability of accepting @ =1 is
l ~0x,

E s of u £ table ¢
From table (1) we know that the acceptance rule os'n > 1000 (.256)3256
will lead to the icceptance of a lot with mean 1ife O = 1000, with

) prodbability .93. From table 2(a) we can say that a lot with mean life
(* 526 will be accep:ed with probability .90, that a lot with mean life

‘ 274 will be accep:ed with probaocility .50, and a lot with mean life
' 160 will be acceped with probability .10.

. o ges o7
i 8. o :

USRI FRRPUPRE SRRV W 3 TR




et

C

F

Values of © accepted with probability p,

probability .95. Rule of action is to accept if ] > Xz (2r)/2r.
. . b oY - § 095

2.65
TABLE 2(b)

when O = 1 is accepted with

Number of failures

if a lot with mean life ¢ = 1 is accepted with probability .95, then a lot

;53 099 .95 <90 J5 W50 .25 .10 .05 .01
1 5.150 1.0 488 179  .07%  .037 .022 017 .01l
2 2.39% 1.0 .668  ,370 L,212 .132 .091  .075~ .O54
3 1.875 1.0 M2 473,306 .209 .15 .130  ,097
4 1,660 1.0 783 .53  .372  .,267  .205- .176  .136
5 1.540 1.0 .810 . 585 422 o314 246 .215 .170
6 | 1.463 1.0 829 .619  .461 .352 .282 L2495  .199
7  |1.410 1.0 844 646 493 .38 312 .277  .225
b8 1.370 1.0 .855  .668 .519  .411  .338  .303  .249
9 1.339 1.0 864 .687 542 435 361 .325 .270
10 1,314 1.0 872 .702  .561 4S5 382  .345  .289
15 1.237 1.0 898 .75  .630  .531  .459 k22  .363
20 1.196 1.0 912 ,788  .674  .S81  .512  .475 416
25 1.170 1.0 2922 810  .709% o617 550  .515 456
30 1.152 1.0 2930  .C26  .728  .645  .581  .S546  .489
40 1,128 1.0 <940 .849 <761 .685 .625 2593 538
50 1.112 1.0 946 865 .785 .7 .658  .627  .574
75 1,089 1.0 .956  .889 822 .76 .711  .683  .635
100 1.076 1.0 .962 « 904 -84k «790 . 745 719 675
Exagple: If the life test is discontinued after r = 1 failure occurs, and

with mean life 0.- .074 1is accepted with probability .50. Rule of actio;l

is: Accept if Ql’ > 052,
R

If the life test is discontinued after r = 5 failures occur, and if

a lot with mean life O = § is accepted with probability .95, then a lot

with mean life O = 422 is accepted with probability .50. Rule of action

is: Accept if ﬁs'u > 394,

e ot 3 e e AR A
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Number of failures
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2,06

TABLE 2(c
Values of @ accepted with probability p, when @ =1 is accepted with

probability .90. Rule of action is to accept if ﬁ; n > 2:?90(2r)/2r°

‘>\{I 299 .95 ~90 75 .50 +25 .10 .05 .01

1 10.550 2.049 1.0 367 2152 .076 .046 . 035 .023
2 3.582 1.496 1.0 553 . 317 .198 2137 2112 .080
3 2.528 1.348 1.0 . 638 412 .281 «207 »175 2131
4 2.120 1.277 1.0 .688 175 342 .261 - 225 L174
5
6

1.902 1,235 1.0 722 .521 .588 « 304 . 266 .210
1.765 1..206 1.0 747 «556 . 425 - 340 . 300 240
? 1.672 1.186 1.0 766 - 584 455 - 370 +329 . 267
8 1.602 1.170 1.0 782 .607 481 .396 . 354 201
9 1.549 1.157 1.0 795 627 . 503 418 .376 .312

10 1.506 1.147 1.0 .805 43 U522 438 ., 396 <331
15 1.377 1.114 1.0 842 .702 <592 .512 471 405
20 1.311 1.096 1.0 . 863 »739 637 w561 . 521 56

25 1.269 1.08i 1.0 .878 764 .669 «597 . 558 .Los
30 1.239 1.076 1.0 .888 783 694 .624 .587 <526
4o 1.201 1.064 1.0 «903 310 .729 .666 .631 .572
50 1.175 1.057 1.0 .91 .829 <755 .695 . 662 .606
75 1 1.139 1.046 1.0 .930  .859 (795  .743 7k 664

100 1,118 1,039 1.0 .939 .877 .820 774 . 747 » 701

Example: If the life test is discontinued after r = 10 failures occur, and

if a lot with mean life ® = 1 is accepted with probability .90, then -

&

a lot with mean life Q@ = .643 is accepted with probability .50, and
e

a lot with menn life €@ = 396 18 accepted with )robability .0S5.

Rule of action is: Accept if 6io,n > 522,

.
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Number of “:1ilures
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TABLE 2(d

Values of @ accepted with probabdility p, vhen 6 = 1 is accepted vith

probability .75. Rule of action is to accept if ?r' 0 >X f.,,(er)/ar.

xﬁ 99 95 .90 15 .50 25 .10 .05 .0
1 28.750 5.%82 2.725 1.0 415 .207 125 .09 J062
2 6.475 2.705 1.807 1.0 573 .357 247 .203 145
3 3.902 2.113 1.5%8 1.0 6k . .325 27k 206
4 3.081 . 1.8%5 1.453 .1.0  .690 496 .380 327 2%
5 2.634 1.710 1.38% 1.0 721 .537 421 .38 .290
o 2.303 1.015 1.339 1.0 .74 .568 455 401 322
7 2.181 1.547 1.305 1.0 762 . 554 483 429 .349
8 2.050 1.496 1.279 1.0 T 615 506 453 .372
9 1.949 1.456 1.2% 1.0 .789 .633 526 A7h .393
10 1.871 1.424 1.242 1.0 .799 .648 54l 492 411
15 1.637 1.32k 1.188 1.0 834 .703 .608 .559 481
20 1.519 1.270 1.1% 1.0 856 .738 650 .604 .528
25 1.446 1.235% 1.139 1.0 .870 762 .680 636 564
30 1.395 1.211 1.126 1.0 .881 .781 .703 661 592
40 1.329 1.178 1.107 1.0 .897 807 ‘737 698 633
50 1.286 1.157 1.008 1.0 .907 .826 .761 .T25 664
i) 1.22% 1.125 1.076 1.0 924 .855 .800 .768 T

100 1.190 1.106 1.065 1.0 934 87h 824 . 796 .Th6
Exsmple: If the life test is discontinued after r = 10 failures occur, and
1f a lot vith mean life 8 = 1 4s accepted with probability .75, then

a lot with mean life 6 = 1.42% 1is accepted with probability .95 and a

lot vith mean life 6 = = .544 1s sccepted with probability .10.

, A
" Rule of action is: Accept if °1o > .T13.
, B

,l



Number of failures

Values of © accepted with probability p, vhen ¢ = 1 is accepted with probability

2,88

TABLE 2(e

A
-50. Rule of action is to accept if 9 > ngo(?fr)/?ro
9 ]

N 95 .90 .95 50 .25 .0 05 .01
1 69,300  13.h56  6.569 2.110 1.0 L5000 o301 .23l L5150

2 11.303 b.722.  3.155 1,76 1.0 623 32 W38k ,253
3 6,133 3,271 2.k26 1.48 1.0 682 .%02 k25 318
b k. 162 2.687 2. 0Lh 1.L48 1.0 .T19 L5500  SUTh o366

5 3.652 2,371 1,920  1.387 1.0  o7hh  o.58L <510 LLO3

6 3.176 2,170  1.799 1.3k 1.0 <76k 611 539 133
7 2,862 2,030 1,712 1.312 1.0 <779 .633  .563  .LS8
8 2,639 1,926  1.647  1.288 1.0 o792 +652 »583 o9
9 2.hi72 1,846  1.596  1.268 1.0 802 o667 ~601 -1198
10 2.3l 1,782  1.554 1.250 1.0 812 681, 616 .515
15 1.962 1.586 - 1.h2k 1,198 1.0 8li3 2129 ,670 576
20 1.775 1.8k 1.35k 1.169 1.0 862 L7159  ,705  .618
25 1,661 1018 1,309  1.1k9 1.0 876 781 731 .68
30 1.583 1,370 1.277 1135 1,0 886  .798 L7950 671
o 1.L82 1.3 1.23h 1,115 1.0 900 L8221 719 706
50 1,118 1.275 1,206 1.102 1.0 910  .838  .799  .73%
75 1.325 1,217  1.16h 1,082 1.0 .926 .865 .832 .13
100 1,274 1.185 1.10  1.072 1.0 «935 882  .852 o799

Examples If the life tes is discontinued after r = 10 failures occur, and if "

a lot with mean 1ife O = 1 is accepted with probability .50, then a

lot with mean l‘fe © = 1.782 1s accepted with probability .95 and e

lot with mean life 0" = 681 is accepted with probability .10.

A
Rule of acticn iss Accept if O, > 0967 »
4

oy
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C: TARLE 3(a)

Values of E(X_ )/0 , where X is the r'P smallest 7alue in a
ryn ryn

Random Sample of Size n Drawn from a Distribution whose Frobability

Density Function is %c'x/e s X5 8>0,
In the table r = 1(1)n and n = 1(1)20(5)30(10)100 .

o 1 2 -3 L S 6
1 1,0000  0,5000  0.3333  0.2500 0.2000  0,1667
2 1.5000  .8333  0.5833  0.4500  0.3667
3 1.8333  1.0833  0.7833  0.6167
L 2,0833  1.2833  0.9500
3 2,2833  1.hS00
6 2.4500

o o\ 7 8 9 10 n 12

{

1 | 0.1k29  0.125  0.1111 0.1000 0.0909  0.0833

j 2 0,3095  0,2679  0.2361  0,2111  0,1909  0,17h2

§ 3 ] 0.5095 0.3kt 0.3790  0.3361  0.3020  0.27h2

§ L | 0.7595  0.63h  0.5l55  0.k790  0.h270  0.3853

* S | 1.0929 0.884  0,7456 0.656  0.5699  0.510L
6 1.,5929  1.217$ 0.9956  0.8456 0.7365 0.6532
7 2.5929 171078 1.3290 1.0956  0.9365 0.8199
8 2.717¢ 1.8290  1.4290  1.1865  1.0199
9 2.8290  1.929%0  1.5199  1.2699
10 2.9290  2.0199  1.6032
11 3,0199  2.1032
12 3.1032
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TABLE 3& (Con't.)

r/n 13 1 15 16 "7 18
l . 0.0769 0.074 0,0687 0.0625 0,0588 0.0556
2 0.1603 0,.148) 0.1331 0.1292 0.1213 0.1,

3 0.2512 0.2317 0.21%  0,2006 0,1880  0,1769
I 0.3512 0.3226 0.298, 0.2775 0.259, 0.2435
5 | O.623 0.4226 0.3893 0.3609 0.3363 0,310
6 | 0.5873 0.5337 04893 0.4518 0,197  0.3919
7 | o.mor  o.6567 0.6, 0,558 0.5106  O.4752
8 0.8968 0.8016 0.725, 0.6629 - 0,6106 0.5661
9 1.0968 0.9682 0.8682 0.7879 - 0,7217 0,6661

10 | L3u68  1.1682 10349  0.9307 O.8u67  0.7773

1| 1.6800  1.4382  1.2349 1097 0,989  0.9023

12 2,1801 1.7516 1.48L493 1.2974 1.1562 1.C451

13 3.1801 2.2516 1.8182 1.5474 1.3562 1.2118

; U 3.2506  2.3182  1.8807  1.6062  1.4118

15 3,382 2.3807  1.9396  1,6618

| 16 2.3807 204396  1.9951

17 3.4396  2.4951

18 3.4951
r ne 19
1 0.0526 7 O.4kks 14 1,264
2 0.1082 8 0.5279 15 1.L64L4,

3 0,6 9  o0.6188 16 1,714

L 0.2295 10 0.7188 A7 2.04,7T7
5  o.962 11 06829 18 25477
6 03676 12 0.9%9 19 3.5477

13 1097

R
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TABIE 3a (Con't.)

e e AT | AW W AR L TFATO T

ne=2
1 0.080 6 0342 1 0.767 16 1.5u
2 0,1026 7 0.4176 12 0.8799 17 107604
3 01582 8 0.5 13 10049 18 2,097
L0227 9 05T W LT 19 2,57
$ 0,219 10 0.6688 15 1.3, 20 3.5977
n=25
r r r r
1 0000 8 0.7 L 0.9 20 1,532
2 00817 9 G352 15 0.880 21 1.732%
3 0250 0 O 16 0.98P 22 1.9826
4 0176 1 O.s6 17 1081 235 2,316
5 0.2282 12 C.6358 18 1.2231 24  2.8160
6 0.2682 13 C,M27 19  1.3660 25  3.8160
7 0.3209 B
n =30
r b Y"
1 00333 1 0442 21 1,1660
2 0,067 12 0499 22 1270
30,2035 13 0,555 23 14021
L 0406 14,  0.6U3 24  1.5480
5 0170 15 0,678 . 25 1,17
6 0.229 16 O34 26 1,917
7 0.2607 17 0.8M9 27 2.1617
8 0.042 13 08908 28 2499
9 03496 19 09750 29  2.99%
10 03972 20 1060
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TABLE 34 (Cont.)

n =0
L o r o r
1 002% 11 03169 2 0,738 31 L.uk%
2 0056 12 0,354 2 0,834 32 1,507
S 0070 13 0.38M. 2  0.830 33 1.6857
b 0040 L 0421 24 0.897 a4 1.8285
5§ 0,318 15 04626 25 0,903 35  1.9952
6 0.1603 16 0,526 26 1,027 36 2,195
7 0.1897 17 0.5443 27 1.0984 37 24452
8 02200 18 O.587 28 11753 38 27785
9 0.2%513 19 0.6332 29 1.2587 39 3.2785
| 0 0283 20 0.4808 0 L3u6 10 hams
a=5
4 r r ' b o
1 00200 16 0,380 31 09515 46  2.4159
2 0.0404 17 0.43104 32 1.0041 47 2.6659
3 00612 18 04407 33 10597 48 2,999
4 00825 19 04720 34 11185 49  3.4992
§ 00,3 20 0.5042 35 L1810 0 4.4
6 01265 20  0.5376 36  1.2476
7 092 2 0570 37 139
8 01725 23 0.07T7 38  1,3960
9 01963 2% O.6u8 39 14793
0 0.2207 25 0.6832 Lo 1.5702
N 0245 26 07232 4 1.602
122 02713 27 0649 42 1.7813
13 0297% 28 0,808k 43 1,963
U 03246 29 0.8538 4,  2.0492
15 0.352, 30  0.9015 A5  2,2159
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TABIE 3a (Con't.)

ne§&
r . r
10,0167 21 0.4263 N 132
2 0,033 2 0,450 2 11848
3 0,0509 23 0.4783 43 1.2403
L 0,068, 2% 0,085 4 1.2991
5 0,0863 25 0.5331 L5 1.3616
6 0,104 26 0.5617 b 1.42683
7 0,123 27 0,59 L7 14997
¢ 0.8 28  0.62U #1577
9 0,611 29 0.6526 49  1.6600
10 0.1807 20  0,6849 50 1,799
n 0,207 31 0me 51 1.8509
12 0,221 32 0.7527 52 1,962
13 0.2019 33 0,788, 5  2.08
U 0.2632 3% 0.8255 s, 2.2299
15 0.2849 35  0.8639 55 2.3965
16 0,307 3  0.5039 56 2,5965
17 0.3299 37 0.6 57 2.8465
18 0,353 38 0.989 58 3.1799
19 0.3769 39 10345 59 3.6799
20 0,013 O  1.0821 @O  4.6799
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TABIE 3a (Com't.)

a=sP®

4 b 4 4

1 0,018 19 0.3 37 0,70 55 1,546
2 0.0288 2 0,333 38 0.7U3 s  1.5813
3 0.035 2 0.353% 39 0,805 57T 1.6527 |
4 0,058 2 0.3MmP W 0,837 58 1.729
5 0.0736 23 0.9 KN 0.87M2 59  1.8%9
6 0.0889 2 0.4161 2 0,957 6  1.9039
7 0.1046 25  0.4379 13 0.9414 Q@ 2,009
8 0.1204 26 0.4601 &b 0. 978l 62 2.11%
9  0.1366 27  O.4828 45 10169 63 2,200
0 0,15 28 0,561 46 1,059 6  2,3828
1N 0.269 29 0,529 K7 1.0985 65 2,595
12 0.1866 30 0.553 8 LD 66 2.TH95
13 0,203 31 0.5799 L9 1875 67 2.999
L 0,22 32 0.6049 50 1.2350 68  3.3328
15 0.2392 33 0.6313 51 1,285 69  3.8328
16 0.257 34  0.6583 22 1337 B 48328
17 0.2759 35 0.8 53 1.3933
18 0.2948 36  0.76 S lasa
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g TABLE 3a (con't.)
n = 80

r r r r
1 00125 2 0.302 4 09 6 1417
2 00282 22 03192 42 0.7 62  L.AM4
3 00300 23 0335 43  0.7639 63  1.5259
b 00510 2 0350  Ah 07909 64  1.5848
5 0061 25 0379 45  0.,8187 85  1.6473
(3 0.0775 26 0,3900 46 0.84T3 66 1.7139
7  0,0910- 27 04086 47 08767 67  1,7853
8 0,1047 28 0.h274 L8 0.907 é8 1,8623
9  0,1185 29  O.67 49  0,9382 69  1.9456
10 0,326 30 04663 O 0,905 PO  2.0365

P 1 069 31 04863 51 10038 7L 2.1365
12 0,16l 32 0,5067 52 1,038 72 2,276

i3 0171 33 0,527 53 1O0MO0 73 2.3Mm6
L 0911 34 O.5488 S 111 7% 2,555
15 02062 35 0505 55 L4955 75 2.682
16 0.2216 36 - 05928 56 11895 76  2.882)
17 0232 37 0.6155 L2127 32
18 0.2531 38  0.6387 58 L2WT T8 3.4655
7
80

BT & o g s At i et € < oo n e o

3

19 0.2692 39 0.6625 59 1.3201 3.9655
20 0.2856 40 0.6869 & 1.3677 4.9655
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TABIE %a (eon't.)

a=9%
r r r r
1  00m 26 033 SN 0820 ¥ 180
2 0025 27 0383 52 0847 T 1.92
3 00337 28 0302 53 0800 W  1.97%
L 0042 29 0383 S 0,080 79  2.0627
S 0058 30 04027 55 0.¢358 80 2,156
é 0,0686 3 0.4294 56 0.9644 8l 2.2536
7 00805 32  0.363 57  0.998 82  2.3647
8 00926 33 045 8 10Ul 8  2.48%
9 01047 3 O47LL 59 1.0853 8k  2.6326
10 oUM 35 0480 60 1.087%6 85  2.79%2
N 0129 36  0.07 61 11200 8  2.9%
12 O22 37 0,557 62  L.15S, 87  3.2492
13 0551 38  O.5445 63 1911 88 3.5625
1, 0.1681 39 0.5637 64 1,2282 89 4,,0826
15 0.1812 40 0. 583& 65 1.2666 90 5,0826
% 0aMS5 K 0.68, 66  1.3066
17 0.208) h2 0.6238 67 1.3483
18 0.218. 43  O.6i46 68 1.3918
19 0.235% M 0,665 69 13T -
20 0297 45 U687 O L.uMs
22 0260 4 0098 T 1,58
2 02705 47 OMA’ TR 15875
Z 02992 48 O7558 T LAY
24, 0.3081 49 0.7796 ™ 1.,7018
25 03233 % 08040 75

1,7643
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TABIE 3a (eom't.)
i ' ) n = 100 |
( ) r r r r

1 00100 26 029% 51 0.0€2 % 1.4
2 00 27 03129 = 0766 T 1.4
3 0,05 28 0.3266 5 0, TA% 7 1.4966
A 006 29 O35 S 0707 M 1.520
5 0,050 0 0.3545 55 0.7924 a0 1.5896
] 6 0066 31 03688 56  0.8u7 el 1.6396
| 7 0072 32 . 03833 57  O0.8m 82 1,693
8 00820 33 0,390 S8  0.806 8  1.uM
9 0.0938 3% 0410 59 0,86 &  1.8066
10 0.1048 as 0.4281 &0 0.9088 85 1.8691
| N 01159 36 04435 61 0938 8  1.93%8

2 0122 37 o5 6 09595 & 202
; ( 13 0385 38 0470 6 0,988 8  2.08k2
| L 0150 39 0491 & 10128 & 2,675
i 15 0166 40 _ 05075 65  1.006 0 2.2
g 16 0173 @& 0,522 66 1.0692 9N 2.3584
i 17 - 0385 42 . O.511 67  1.0986 92  2.4695
1B 019% 43 0.55%, 68 11289 93 2.5%5
19 0.209% 4  O0.5759 69 11601 % 2.7
20 0229 45 0598 O 1A% 95 2.5
21 02344, 46 0619 T 1.2 9% 3.0
2 Oum A7 0.6305 72 12602 97 3.3%0
23 0259 48 OB B 12959 9% 3.6m
2 0.2729 A9 0.6686 M LBP 9 A%
g Lz ome 0 o8 75 1374 100  5.187%

Beample: Find the expected waiting time for the 10th failure in a sample of sime 20.
Agsume that O = 1000 hours.

Selution: This means E(X. . ) = (.6688) 1000 ~ 668.8 hours.

i e i e
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2.99

TABLE 3(o)

Ratio of Expected Waiting Time to Observe the r'" Failure in

Samples of Sizs n and r , Respectively.
Apn ™ E(xr’n)/E(xr,r)

N2 2 3 b 5 10 15 20
1 1 .9 o33 025 020 0 067 .05
2 1 56 39 W30 Wb .092 068
3 1 59 L3 .18 012 .087
L i 062 23 ol .10k
5 1 .28 .18 0125
10 : 1 .35 023

Example: Compare the expected waiting time to observe the 10th failure
in a sample of size 20 with the expected waiting time to observe
the 10th failure in a sample of size 10. The answer is oﬁ =,23 .
. 0,20

S o et s+ o 70 S
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Table Ua)

2.100

Yalues of 'X,i_ a(b)E(xr’n)/zr for A= 01 .

h 2 2r 3 ~ b S5r ér r 8r 9r 10r 20r
1 005 003 .,003 002 .002 .00L 001 .00L 001  -00CS
2 -Ol3 027 .020 006 013 01l o010 008 008 .00k
3 089 085 0 031,026 022 019 017 015 007
b 0131 079 087 -0hs 037  .031 027 .02k 021 01
1 0165  .100  .OT2 056 .0h6 039 .03h 030 .027 013
6 0195 117 08k 065 088  .0bs 039 0035 031 015
7 219 J131 o9k 0P 060 0851 Ok 039 035 (017
8 201 .1h3 103 080 065 .05 .0b8  .0h2 038 019
9 2260 <155 110 086 070 060 052 OLk6  0ld 020

10 0276 16} 117 091 075  .063 056 .08  .0M3 023

15 +337 »199 21h2 ~110 2090 <076 066 -058 o052 028

20 377 222 88 .123° .01  .085 .07k .065 058  .02¢

25 L06 239 170 0132 .108 091 079 070 062 .30

30 A28 .22 179 39 L1k 095,083 0Th 066 .32

ko 160 270 »192 o1h9 2122 103 089 2079 070 .03k

) 482 283 2201 L1586 ,128 L1086 .09h 062 OTh 036

75 518 .30k 216 167 137 116 100 088 079 .03

100 | .50 316 225 17k k2 3200 J10h 092 082  -cho

Remarks Tru:ica‘bed non-replacement tests of the fomm accept if

X

ryn
tests of the form accept if

. £
table, « {the type I error) is .01, when 9 =0 .

>T= 901':- d(2r)E(Ir’n)/2r have virtually the same 0.C. curve as

T, ,>C=0, 3 (2r)/2r . In the above

Bxample: Consider a non-replacement situation, where we start with n = 18 items
where r-6,9°-1000hwra¢nd0t- o0l . The test procedure is
acoept 1if x6,18 > 117 - In words: Accept if the 6th failure has not yet
occurred by 117 hours and reject if the 6th failure occurs befors 117

Such a plan will eccept a lot with mean life 1600

hours have elapeed.
hours with probability .99.

Skl by b e+

S ety g

Mt sraimn 4 s it e 4
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Table 4(b)

Values of XZ__ (2r)8(X, )/2r for « = .05 .

F;}\:;L 2&r 3 b 3 6r 7 8 9r lor 20r

| 1 | .26 .07 .13 .010 .009 .007 .006 .006 .005 003
; 2 .04 ,065 .048 .038 .03 .026 .02 .020 .018 .009
; 3 .168 .103 .075 .038 .048 .o41 .036 .031 .028 .014
: b 217 .132 .095 .07% .061 .052 .O45 .0k0 .036 017
| s | .25 .53 .110 .08 .0M .060 .052 .046 .041  .020
| 6 28 170 122 .095 .078 .066 .057 .051 .045  .022
; 7 | .309 .18 .32 .105 .08k .072 .062 .055 .Oh9 .02k
| 8 | .33 .197 .m  .110 .090 .076 .066 .058 .052 .025
: 9 J348 .207 .48 115 .09% .080 .069 .061 .085 ,027
10 363 .216 .15k .120 .098 .083 .072 .064% .057 .028

15 H17 246 175 .136 12 .09%  .082 .072 .065 .032
2 451 .266 .189 .47 .120 .102 .088 .078 .070 .034
i 25 475  .280 .199 .154 .126° .07 ,093 .082 .073  .036

‘ 30 493  .290 .206 .160 .131 111 .096 .085 .076 037
: ko .519 .305 .216 .168 .137 .16 .101 .089 .079 039
1 50 536 315 .223 .173 .42 .120 .10k .092 .082 .040
f 75 56k .33 .235  .182 149 126 .109  .096 .086 .0k2
f 100 S81 340 242  .187 .153  .130 .112  .099 .089  .043

2
Remark: Truncated togtn of the form, accept if xr’n ST a Ool 1_“’(21')3(1‘,")/21'

have virtually the same 0.C. curve as tests of the form, accept if

8 >C =0 J(z (2r)/2r « In the above tadle, o (the Type I error)
Tel 0 NMlew

is 005' when @ = .o .

Exanple: For-n = 18, r=6, @, = 1000 hours, and « = .05, the acceptance
region is: Accept if X, g > 170 hours.
?

W b, cae o+
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Table 4(c) -

sy

Values of X3 (2r)B(X_ )2r for w = .20

r > . 2r 3r by 5r 6r 7 8r 9r 10r 20r

1 .0%3 .035 .026 .021 .018 .01 .013 .012 .Ol1 .00S

2 JA85 .098 072 .05 .046 .039 ,O34 .030 .027 .013

3 226 .139 .101 .079 .065 .05% .048 .ok2 .038 .019

[ 277 168 .121  .095 .078 .066 .057 .051 .Ok5  .022

5 314 .189 .136 .106 .087 .07% .064 .057 .O51 .025

é 343 .206 .147 .115 .09% .080 .069 .061 .055 .027

? .366 .219 .157 .122 .100 .085 .074% .065 .058 .028

8 386 .230 .164 .28 .105 .089 .077 .068 .061L .030

9 402 239 .a71 133 .109  .092 .080 .07 .063 .03l

10 L26  287 176 137 112 .095 082 073  .065 032

15 465 .27 196 152 .12%  .108  .091 .08L .072 .035

20 | .b9% .201 207 161 .132 .12 .097 .085 .07 .037

25 515  .303 .216 .167 .137 .116 .100 .089 .079 .039

30 530  .312  .222 .172 .41 .119  .103  .091 .081 .0kO

ko 552 .32k .230  .179 .1k .12k 107  .09% .08k .04

%0 567 .333 .23 .18% .150 .127 .110 .097 .087 .0h2

f 75 590 .346 .24 .190 .156 .132 .114%  L101  .090 .Ohbk

| 100 604 (354 .251 .195 .159 .135 .117 .103 .092 .OS
}

Remark: Truncated tosts of the fora, accept if

2
xr.‘ >T = Ooxl‘“

f curve as tests of the form, accept if 31_ na>Cs= °ox'§.-u. (2r)/2r .
1 ]

(zr)xc(xr.n)/zr have virtually the same 0.C.

In the above table, o/ (the Type I error) is .10, when 0 = °o .

E Example: For n =18 , r =6 , 0° = 1000 hours, snd of = .10, the acceptance
E ' region 1a: Accept if X 18‘> 206 hours.
]
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(— . Table 4(4)

Values of X5 (2r)B(X, )/2r for = .25

> 2 2r 3r be Sr ér 7r 8r 9r lor  20r

1| .4k 096 .072 .058 .048 04l 036 .032 .029 .04

2 | 288 176 .29 .102  .08% .071 062 .055 .O49 .02k

3 «355 .28 .158 .12¢ .102 .087 .075 .067 .060 029

b | .02 244 176 .138  .113  .096 .083 .O7% .066 .032

5 | 435 .262 .88 .47 121 .02 .089 .078 .070 .03k

6 | .459 .27%6 .97 .14 .126 107 .093 .082 .073 .036

7 | 478 .286 .205 .159 .131 .111 .096 .085 .076 .037

8 493 294 .210 o164 .134  .114 099 .087 .078 .038

9 | .506 .31 .215 .168 .137 .116 .101 .089 .080 .039

f 10 517  .307 .219 Q72 k0 .118  .102  .091 .081  .040
15 | .s52 .326 .232 .181 148 .125 .108 .096 .086 .Ok2
g 20 573 338 .2%0 .187 153 .129 .112  .099 .083 .043
§ 25 | .587 .345 .26 .191 .156 .132 .11k .101  .090 .04k
: 30 | .597 .351 .250 .19% .159 .13% .116 .103 .092 .OkS
f b | 611 .359 .255 .198 .162 137 .119 .105 .09%  .Ok6
! 50 | .620 .364 .258 .201 .164 .139 .120 .106 .095 .O46
5 75 | 635 372 .264 ,205 .168 .lk2 .123 .108 .097 .Ok?
| 100 | .643 .377 .267 .208 170 .143 .124 .110 .098 .0k8

f Remark: Truncated tests of the form, accept if
2 .
xr" >T= °ox 1w (&)E(xr")/Zr have virtually the same 0.C.
curve as tests of the foram, accept if Gr >C =0 12 (2z)/2r .
B 0™ leay ‘

In the above table, o (the Type I error) is .25, when O = o, -

Examplé: For n =18 , r =6, @, = 1000 hours, and o = .25, the acceptance
I: region is: Accept if x6‘18 > 276 hours.
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i Table 4(e)
C

Values of X3 (2r)B(X_  )/2r for o= .50

! N 2r 3r by Sr 6r 7 8r or 10r 20r
1 346,231 173 139 .116  ,099 .087 .077 .069  .035

2 489  .308 .225 .177 .16 ,125 .108 .096 .086  .o42

3 JS4h9 338 .24 192  .158 .13k .116  .103 .092  .O4S

N 582 35k .255 .199 .164 .139  .121  .107 .095  .O47

5 .603 .36k  .261  .204 .167 .1k2 123 .109 .097 .O48

6 617 370 265 .207 .170 .1h%  ,125 .110 .099 L0438

7 .628 375 269 .209 .172 .45 126 L111  ,100 .OW9

8 636 379 270 .211  .173 46 .127  .112  .100  .O49

9 641 382 .273 .212 L17% L1447 .128  .113 .10l 049

10 647 384 .27%  .213  .175 148  .128 .113  .101  .0%0

15 .662 .391  .279 .217 .177 .150 .130 115 .103  .050

20 669 .394 .281 .218 .178 .151 .131 .115 .103 .050

25 674,397  .282 .219 179 .152 .131  .116 .104  .0S1

30 677  .398 .28% .220 .18 .152 .132 .116 .10k ,051

40 .68L .40O0 .284% .221 .180 .153 .132 .117 .104 .0S1

50 .683 401 .285 .221 .181 ,153 .132 L117 .104 .0S1

§ 75 .687 403 .286 .222 .181 153 .133 .117 .105 .051
f 100 .680 .403 .286 .222 .182 .154 .133 117 .105 .0S1

Remark: Truncated tests of the form, accept if

2
xr.n >T = Ooxl_“ (a)z(xr'n)/ar have virtually the same 0.C.

A 2
curve as tests of the form, accept if or,n >C = eoxl-c (ar)/2r .

In the above table, ot (the Type I error) is .50, wvhen O = 9o, -
i v

Example: For n =18 , r = 6 , 0° = 1000 iours, and o, = .50 , the acceptanse
> «
region is: Acecept if z6=18 370 hours

o e e it e mn = e, A
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("’") Tadble 5
Values of r and X.i_“ (2r)/2r such that the acceptance region

Op > 9 X3 (2r)/2r s such that L(9) = 1 -o and L(9,) < 8.

s 01 o = 0L o m 01 o= 01

B= .01 B = .05 A= .10 B = .25

/0, | r A (@Ve| ¢ A2 (an)/ar 2 (2r)/er G S22
o1 ‘ LY leog ST/ T r x’l-u r r l=ce v

3/2 |136 8114 101 .7831 83 <7625 60 724k
2 46 .6892 35 6492 30 6247 22 5715
3 19 S5hh4s 15 4985 13 14692 10 4130
5 9 3897 8 3633 7 +3329 5 +2558
10 5 »2558 4 .2058 N .2058 3 1453

s 05 o=z 05 o= ,05 o u .05

Bz .01 B=n .05 A= .10 B= .25
3/2 | 95 837 67 .8079 S5 7890 35 «7391
2 33 <7319 23 6834 19 .6548 13 +5915
3 13 .5915 10 5426 8 976 |7 6 355
5 ? L4694 5 <3940 4 .3416 3 2725
10 b .3416 3 «2725 3 2725 2 1778

o= .10 o = .10 &= .10 o= 10

H= 01 p= .05 ‘Be= 10 B = .25
32 | m .85 52 .8269 1 .8058 25 .7538
2 26 .7583 18 7123 15 _.6866 9 - .6036
3 1 +6383 8 .5820 6 .5253 4 4363
[ 5 4865 [ 4363 3 «3673 3 3673
10 3 <3673 2 2660 2 «2660 2 «2660

e .25 o = .25 X = 25 o= 25

p = o°1 ﬁ = .05 ﬁ = .10 ﬁ - 025
3/2 | s2 .9033 32 .87%8 23 .8526 12 <7932
2 17 .8275 11 .7836 8 P4hS 5 6737
3 7 +7261 5 6737 4 .6339 2 4808
[3 3 5758 2 4808 2 4808 1 .287%
10 2 4808 2 4808 1 .2875 1 2875

.
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Ezanple:

Solution:

2.106

Find a 1ife test which poassesses the following 0.C. curve:
If the mean 1life is ‘o = 900 hours, it is accepted with
probability .95; if the mean life is 01 = 300 hours, it is
accepted with probability < .10 . | '

In this example @ /9, = 3 , o= .05 , and f= .10 , therefore
the required number of failures is r = 8 . The region of
acceptance is given by sa’n > (900)(.4976) = 448 . In words:
Stop life testing after 8 failures have occurred. If the mean
1life based on the 8 failures <that have occurred > 448, accept;

othervise, reject.
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Table 6
Values of n , the sample size, needed in truncated replacement
procedures. :
of B 001 ﬂ s 01 [VAR ] <01 ﬁ = .05
ol 3 5 10 2 3 5 10 20
o’

3/2 331 551 1103 2207 237 395 790 1581
2 95 158 317 a3k 68 113 227 byl
3 31 51 103 206 2z 37 7% 149
9 10 1? 35 70 8 1k 29 58

10 ke 6 12 25 3 4 8 16

o = .01 ﬂ = .10 of = +01 ﬂ = .29

3/2 189 316 632 1265 130 217 434 869
2 56 93 187 374 3 62 125 251
3 18 30 60 12} 12 20 b1 82
5 7 11 23 4e 5 ?7° 13® 25

10 2 4 8 16 2 2 H 8

e 05 /3 a .0 & = .05 '6 a 09

3/2 238 397 795 1591 162 270 541 1082
2 72 220 21 483 47 78 157 31k
3 2% 38 76 153 16 27 sS4 108
5 9 16 32 65 6* 10* 19 39

10 4 6 13 27 3 & 8 16

of = .05 A = olo X = 005 ,3 = .25

3/2 130 216 433 867 77 129 258 517
2 37 62 12k 248 23 38 76 153
5 1 19 39 79 ?7 13 26 52
5 & 7* 13 27 3¢ 4 8 16

10 3e L 8 16 b § 2* 3 7

o= .10 S = .01 K= 10 AB= .05

3/2 197 329 6% 1319 128 214 429 859
2 59 98 197 394 38 64 128 256
3 21 35 70 150 13 23 46 93
S5 7 12 2k 48 5 8 1?7 3k

10 3 S 11 22 2° 3e S 10

[ ———
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Table 6 (cont'd)

x = .10 ﬂ = olo ol = olo ﬂl 025
o o
3 5 10 20 3 5 10 20
%/%

3/2 99 165 330 660 56 9% 188 376
2 30 51 102 205 16 27 Sk 108
3 9 15 31 63 5 8 1?7 34
5 4e 6* b § 22 3 5 11 22

10 2° 2 5 10 1 2 5 10

X - 25 /9 a .01 X = 25 B= 05

3/2 1% 234 469 939 8 140 280 s60
2 h2 70 140 28 25 43 86 172
3 15 25 50 101 10 16 33 67
5 5 8 17 3h 3 5* 10* 19

10 4 2 4 9 19 2 4 9 19

o = 025 ﬁ = .10 o = .25 ﬂ:..ZS

3/2 58 98 196 392 ] 28 47 ¢5 190
2 1?7 29 59 119 10 16 33 67
3 4 12 25 50 2 4 9 19
5 3* b 9 19 1 - 2¢ 3¢ ge

10 1¢ 2* 3¢ 5 1° 1 2 5

*Remark: It was indicated that if one uses the 6, in table (5) and sets

(-] (2r )
the sample sise 1 = [52 ﬁ"z 2 ]. then it may happen that while
°

L(Oo) 2 lew, I'“l) say be slightly > P . One way of getting around this
is to use n+l items (rather than n items) and to use the slightly smaller

truncation time 'l'g = eaxf_ ‘(Zx‘o)/z(ml). The test based on

m.n(xro'nmﬂgg). will have L(Oo) s 1= and L(ol) S-P' In the above

table such an adjustment had to be made in the following cases:
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Table 6 (cont'd)

"
« A 9/T oolo; : (n+1) LA
01 .01 3 10 4 «959
<01 .05 3 10 3 823
.01 025 3 5 [ .959
[ 01 ° 25 5 5 7 » 91“
.01 »25 10 5 13 .984
.0l 025 3 10 2 654
.05 205 3 5 6 .985
.05 .05 5 5 10 .985
<05 .05 3 10 3 .818
.05 <10 5 5 i +976
.05 -10 3 10 2 .818
.05 025 3 5 2 .818
.05 " 25 5 10 2 .889
.10 .05 3 10 2 .798
.10 .05 5 10 3 .887
- .10 .10 3 5 & .827
.10 .10 5 5 € .918
.10 .10 3 10 2 -798
25 05 > 5 3 .962
«&5 .05 5 5 s -962
«25 .05 10 5 1¢ .962
<25 <10 3 5 3 .962
«25 010 3 10 1 .863
295 .10 5 10 2 .719
25 .10 10 10 2 .958
«25 25 3 5 1 .863
25 025 5 5 2 «719
.25 025 10 5 2 «958
25 025 20 5 6 .958
25 025 3 10 1 .863

Ezasple: Find a truncated replacement plan for which To = 500 hours,
which will accept a lot with mean 1life = 10,000 hours at least 90 percent
of the time and reject a lot with mean life = 2,000 hours at least 90
percent of the time.

Solution: 1In this case e° = 10,000, al = 2,000, == ,10. Since
90/9135,4 =$=.10, we see from Table 5 that the rejection number is ¥ =3.

Corresponding to 0,/0,s5, /T =20, 0t = .10, one sees from Table 6
that the saample sige is n=22.

-1
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Table 6 (cont'd)

Thus the derived truncated replacement plan meeting the requirements

is as follows: Start the life test with ns22 items. As soon as an

item fails replace it by a new item. Accept the lot if: nin(x3'22;500) -

500 (i.e., i 3 failures have not occurred by 500 bours, stop life
-—testing and accept). Reject the lot if: 'minLXS’az;soo)'- Iy 22 (1.0,

if the 3rd failure runs before 500 hours, stop at the third failure

and reject).

Example: Find a truncated replacement plan for which T, = 500 hours,
which will accept a lot with mean life = 1500 hours at least 95% of
the time and reject a lot with mean life = 150 hours at least 95% of
the time.

Solution: In this case eo = 1500, él =z 150, 2= 8= .05,

Since 60/91 = 10,#ug=a .05, we see from Table 5 that the rejection
aunber is £, = 3. Corresponding to 60/91 = ‘10, eo/To = 3,
sugs= .05, one sees froa Table 6 that the appropriate sample sisze
to use is 3. Since this number has an asterisk (°) attached to it
we see that we can actually use the smaller truncation time
TN = .818T° = (.818)500 = 409. Thus the desired truncated replacement
plan meeting the requirecents is as follows:

Start the 1life test with 3 items. As soon as an itenm fails
replace it by a new itea.

Accept the lot if: Min(X, ;3409) « 409 (i.e., if 3 failures have
]
aot occurred by 409 hours, stop life testing and accept).

Reject the lot if: Hin(23’3;#09) =X, , (i.e., 1f the 3rd failure
occurs before 409 hours, stop at the 3rd failure and reject).
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Table 7
Values of =, the sample site, needed in truacated replacenent
procedures.
4 = .01 b= .03 ‘e .0l Pa=.05
~& T, 1
(-] 0/01 3 5 10 20 3 s 10 20
.
3/2 ko3 622 1172 227% 291 L8 842 1632
2 119 182 340 657 87 132 248 872
3 4 61 113 216 30 8 82 157
5 15 22 39 7% 13 18 33 62
10 6 9 15 28 & 6 10 18
An 001 P = .10 o = 001 ‘ = 025
3/2 234 359 © 675 1307 162 248 465 899
2 72 109 202 390 & 7% 137 262
3 25 3?7 67 128 18 26 &6 87
5 11 15 26 50 6 9 15 28
10 4 3 10 18 3 Y 6 10
o n «05 ’ = 001 *® .05 ’ - oO§
3/2 289 &4 843 1639 198 305 575 1116
2 90 138 258 499 59 90 168 326
3 30 4s 83 160 21 32 59 113
5 13 20 36 69 8 12 22 &1
10 6 9 15 29 b S 9 17
¢ =.05 p=.l0 =05 ga=.25
3/2 159 2b5 62 895 96 17 2% 535
2 &7 72 b 258 30 L] 83 160 :
3 16 F1% 3 83 u 16 29 95
5 6 9 15 29 & ] 9 13 :
10 & S 9 1?7 2 2 &
!
{
o = -10 ‘ = 001 A = 010 ’ = .05 .
s/2 238 369 699 1358 156 282 AS6 886
2 73 12 210 807 Y] ™  13? 265
27 &0 75 iss 18 27 50 97
s 10 14 26 3 7 10 19 36
10 5 4 12 23 2 3 6 n
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Table 7 (comnt'd)

d=x .10 p = J10 o= W10 p = «28
3 3 10 20 3 5 10 20
3/2 121 186 3% (1.1 69 107 201 389
2 » 59 110 213 21 3 58 113
3 12 18 3% 66 7 10 19 36
D 5 7 12 23 5 7 12 23
10 2 3 6 1 e 3 6 1
oo = 025 ,. 001 A= 025 ’. 005
3/2 168 261 ‘23 965 101 156 296 576
2 51 P9 1 289 3 M 9 17?7
3 19 29 54 105 12 19 36 69
[ 6 10 18 36 3 5 10 20
10 3 S 10 20 3 S 10 20
ds 025 ’. «10 o = -25 ’ - 025
3/2 71 10 207 4o3 34 53 101 196
2 2 33 63 123 12 19 36 69
3 9 1h - 27 J2 3 S 10 20
S 3 S 10 20 1 b | 3 6
10 1l 1l 3 6 b 1l 3 6

Exsgple: Find a truncated mon-replacement life test for which T =500
hours, which will accept a lot with mean life =« 10,000 hours at least 90%
of the time and reject a lot with mean life = 2,000 hours at least 90%
of the time.

Mz In this case ‘ollo.ow. 01-2.000. dug =,10. 8ince 30/0135.

o =28x.10, we find from Table 5 that the rejection number is r°-3 .
Corresponding to 00/91-5, Qol_'l'o-zo..gsp =.10, one sees froam Table 7 that
the sample sise na23 . Thus the derived truncated non-replacement plaa
meeting the requirements is as follows: Start the life test with ne23
items. Don't replace items as they fail. Accept the lot if m(x,’z,;m).
500 (1.0., if 3 failures bave not ocourred dy 500 hours, stop life testing
and accept) Reject the lot if: lin(x”238500)-¢3'25 (1.e¢., if the 3rd failure
occure before 500 hours, stop at the 3rd failure and reject).

e e ——
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Table 8

Values of Ty (upper numbers) and of Zi- .‘(Zro)/z (lower numbers) such
that the test based on using a sampling plan with sample eize equal to
[Xi_ ‘(Zro)IZpOJ and with rejection number r o will have an OC curve such
that L(po)sl--t and L(p,) <. L(p) is the probability of accepting a

lot having fraction defective p.

pl/po o = 01 oL = .05 o = .10
#= .01 .05 | .10 .01 .05 | .10 .01 .05 .10
3/2 136 101 83 95 67 55 77 52 41
110.4 | 79.1 h63.5 79.6 |S4.1 |43.4 65.0 | 43.0 | 33.0
P b6 35 |30 33 {23 9 26 18 15
31.7 | 22.7 h8.7 ‘iah.z 15.7 2.4 19.7 | 12.8 |10.3
5/2 27 21 18 ‘ 19 14 N1 15 11 9
, 16.4 | 11.8 | 9.62 || 12.k | 8.46|6.27 {]10.3 7.021 5.43
3 19 15 13 13 10 8 11 8 6
10.3 7.48 | 6.10 7.69| 5.43} 3.98 7.02] 4.66 ! 3.15
s 12 10 9 s |7 6 7 5 4
5.43] 4.13| 3.51 4.70{ 3.29 | 2.61 3.90| 2.43 | 1.75
5 9 8 7 ? 5 b4 5 & 3
3.5 2.91]2.33 3.29 1.9711.37 2.431 1.7 | 1.10
10 5 4 4 4 3 3 3 2 2
1.28 .823 .823| 1.37| .818 .818( 1.10 532 .532

Exanple: Find a life tost having the following properties, I

accept at least 90% of the lots for which the probability of failing before
some time T k6 1s < .01 and will reject at least 95% of the lots for
which the probability of failing before T, 2 -20.

Solution: In thial probdlen, .p°=,01¢ pls.lo, o 2,10 and p =.05. Thus
Py/P, » 10 and 50 we see from Table & that r =2 and N=[.532/.01]«53.
Thus the life test is as follows: Place 53 items on test. If 2 or more
failures occur before time ‘l‘o. reject. 1f one or fewer failures occar
before time .,'ro, accept.
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(_J Table 9

Values of ho' 1° and 8 for various values of «,. s, and 91. The normalized
value, Gosl, is used. '

o,=2/3 | 0,=1/2 0y =1/3
: « | B b, hL b h% ;l b El
' B

201 |.01 9.1902 | 9.1902 § 4.5951 | 4,5951 2.2976 2.2976 2
, 01 |05 5.9714 | 9.1078 |} 2.9857 | 4.5539 1.4928 2.2769 g
| .05 |.01 | 9.1078 | 5.9714 ! u.5530 | 2.9857 | 2.2769 | 1.4928 |
; 205 | .05 5.8889 | 5.8889 § 2.94hk | 2.9444 1.4722 1.4722
é
g o o
1 |
g 2/3 .8109 j
i i
i 1/2 .6931 §
o 1/3 .5493 ]

Example: Find a sequential life test for the case vhen « 2.05, #=.05,

90-300 hours and el-.-loo hours.

Solution: For this case, hi<h =1.4722 (since & =3 if O  is normalised

as 1 ), and 8=.5493.
Therefore the region (35) is given by:
300[~L.4722+.5493r] < V(t) < 300{1.4722+.5493r] . |
Simplifying this gives: ;
«4424165r < V(t) < 4L2+165r .

The life test is continued so long as V(t), the total observed life up to ~
ti.no.' t, satisfies both inequalities. As soon as fho inequalities are
vielated , one accepts H (1.e., eossoo) 17 V(t) > 442 + 165r and

i: one rejects H (i.e., accepts T, (9,=100) if V(t) < 442 + 165r .
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('; Table 10
Approzimate values of Ee(r) for sequential tosts for various values of
.kse o/ 9,,ctand £

k=8 /0, Il 3/2 | 2 . 3
&K Jl .01 . <05 .01 .05 .01 <05
e p
o .01 12 8 ? 5 5 3
.05 12 8 7 5 5 5
8, .01 62.4 40.3 23.3 15.1 10.4 6.74
»05 60.4 36.7 22.6 13.7 10.1 6.1k
s .01 128 82.7 I3.9 28.3 17.5 11.3
.05 82.7 52.7 28.3 18.0 1.3 7.18
{ 2 .01 47.6 b4, 2 4.7 13.6 5.00 4.63
° .05 30.8 28.0 9,48 8.6% 3,23 2.94
o any L 0 C 0 0 ¢ 0

R ks ek a0 O A N BN Bt 157

Example: Find Ee (r) if cne is tecting Go/el =3 with £ =.05, and
°

P 2.05.

Solution: Tae expectoed number of items failed in reaching & decision

when 9=9° is Ego(r) a 2.94.
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Figure 4(a)
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Comparison of moau.v curves for auacoaa»b..v/wnﬂunﬂ«oa replacenent v.._.luh.. The
0.C. curves for each plan are such that H.Aoov = .95 and vnou.v =z ,05 with

8, = 1500 and ‘@, = 500.
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“TaypeATED  REPLALEMENT Vi
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Soo 1000 ) 500 2000 2800 3000
Figure &4(b)

Comparison of wo:v curves for sequential and truncated replacement plans.
The 0.C. curves are such that H.Aoov = .95 and H.numu.v = .05, with oo = 1500
and @, = 500. The 110 dashed line gives the value which E,(t) approaches

agyaptotically as & —> @ .
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